Open Access
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01028
Number of page(s) 8
Published online 23 October 2020
  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. [Google Scholar]
  2. Boyd, S., & Chua, L. (1985). Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Transactions on Circuits and Systems, 32(11), 1150–1161. [CrossRef] [Google Scholar]
  3. Golik, V., Komashchenko, V., & Morkun, V. (2015) Feasibility of using the mill tailings for preparation of self-hardening mixtures. Metallurgical and Mining Industry, 7(3), 38–41. [Google Scholar]
  4. Morkun, V., & Tron, V. (2014) Ecological and economic optimization of iron ore processing automated control. Metallurgical and Mining Industry, 6(5), 8–10. [Google Scholar]
  5. Ching-Hsiang Tseng, & Powers, E.J. (1995). Identification of cubic systems using higher order moments of i.i.d. signals. IEEE Transactions on Signal Processing, 43(7), 1733–1735. [CrossRef] [Google Scholar]
  6. Morkun, V., Morkun, N., & Pikilnyak, A. (2015). The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics, (56), 340–343. [Google Scholar]
  7. Butkovskij, A.G. (1965). Teoriya optimal’nogo upravleniya sistemami s raspredelennymi parametrami. Moskva: Nauka. [Google Scholar]
  8. Morkun, V., Morkun, N. & Pikilnyak, A. (2014) Ultrasonic facilities for the ground materials characteristics control. Metallurgical and Mining Industry, (2), 31–35. [Google Scholar]
  9. Grigor’ev, V.V., & Bystrov, S.V., & Pershin, I.M. (2010) Sintez raspredelennykh regulyatorov. Sankt-Peterburg: SPbGU ITMO. [Google Scholar]
  10. Golik, V., Komashchenko, V., Morkun, V., & Burdzieva, O. (2015) Metal deposits combined development experience. Metallurgical and Mining Industry, (6), 591–594. [Google Scholar]
  11. Pershin, I.M. (2013). Sistemy s raspredelennymi parametrami. Pyatigorsk: SKFU. [Google Scholar]
  12. Vasil’ev A.N. (2007). Matematicheskoe modelirovanie raspredelennykh sistem s pomoshchyu neyronnykh setey. Matematicheskoe Modelirovanie, 12(19), 32–42. [Google Scholar]
  13. Galushkin, A.I (2002). Neyromatematika. Moskva. [Google Scholar]
  14. Morkun, V., Morkun, N., & Pikilnyak, A. (2015). Adaptive control system of ore beneficiation process based on Kaczmarz projection algorithm. Metallurgical and Mining Industry, (2), 35–38. [Google Scholar]
  15. Qi Chenkun. (2009). Modeling of nonlinear distributed parameter system for industrial thermal processes. PhD Thesis. Hong Kong, China. [Google Scholar]
  16. Pavlenko V.D. (2016). Methods and tools for identification nonlinear dynamical systems with using Volterra models. PhD Thesis. Odesa, Ukraine. [Google Scholar]
  17. Morkun, V. & Tron, V. (2014) Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, (6), 4–7. [Google Scholar]
  18. Porkuyan, O.V. (2009). Control of nonlinear dynamic objects of concentrating productions on the basis of Hammerstein hybrid models. PhD Thesis. Kryvyi Rih, Ukraine. [Google Scholar]
  19. Golik, V., Komashchenko, V., Morkun, V., & Zaalishvili, V. (2015). Enhancement of lost ore production efficiency by usage of canopies. Metallurgical and Mining Industry, (4), 325–329. [Google Scholar]
  20. Doyle, F.J. III, Pearson, R.K., & Ogunnaike, B.A. (2002). Identification and Control Using Volterra Models. London. [CrossRef] [Google Scholar]
  21. Taiho Koh, & Powers, E. (1985). Second-order Volterra filtering and its application to nonlinear system identification. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(6), 1445–1455. [Google Scholar]
  22. Golik, V., Komashchenko, V., Morkun, V., & Irina, G. (2015). Improving the effectiveness of explosive breaking on the bade of new methods of borehole charges initiation in quarries. Metallurgical and Mining Industry, 7(7), 383–387. [Google Scholar]
  23. Li, H.-X., & Qi, C. (2009). Incremental Modeling of Nonlinear Distributed Parameter Processes via Spatiotemporal Kernel Series Expansion. Industrial & Engineering Chemistry Research, 48(6), 3052–3058. [Google Scholar]
  24. Morkun, V., & Tcvirkun, S. (2014). Investigation of methods of fuzzy clustering for determining ore types. Metallurgical and Mining Industry, (5), 11–14. [Google Scholar]
  25. Zheng, Q., & Zafiriou, E. (2004). Volterra-Laguerre Models for Nonlinear Process Identification with Application to a Fluid Catalytic Cracking Unit. Industrial & Engineering Chemistry Research, 43(2), 340–348. [Google Scholar]
  26. Abhishek S.Soni. (2006). Control-Relevant System Identifiction Using Nonlinear Volterra and Volterra-Laguerre Models. PhD thesis. Pittsburgh, USA. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.