Open Access
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01029
Number of page(s) 11
Published online 23 October 2020
  1. Stupnik, M.I., Kalinichenko, V.O., Kalinichenko, O.V., Muzika, I.O., Fed’ko, M.B., & Pismennyi, S.V. (2015). The research of strain-stress state of magnetite quartzite deposit massif in the condition of mine “Gigant-Gliboka” of central iron ore enrichment works (CGOK). Metallurgical and Mining Industry, (7), 377-383. [Google Scholar]
  2. Stupnik, M., Kalinichenko, V, Pysmennyi S., Kalinichenko, O., & Fedko, M. (2016). Method of simulating rock mass stability in laboratory conditions using equivalent materials. Mining of Mineral Deposits, 10(3), 46-51. [CrossRef] [Google Scholar]
  3. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V., & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 37-41. [CrossRef] [Google Scholar]
  4. Stupnik, M., Kalinichenko, O., Kalinichenko, V., Pysmennyi, S., & Morhun, O. (2018). Choice and substantiation of stable crown shapes in deep-level iron ore mining. Mining of Mineral Deposits, 12(4),56-62. [CrossRef] [Google Scholar]
  5. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. [Google Scholar]
  6. Dolgikh, A.V. (2014). Application of neural networks to investigations into the earth surface mined by underground operations. Geomatica, (1), 92-96. [Google Scholar]
  7. Dolgikh, O.V. (2018). Use of capabilities of modern devices in investigating into slides on territories of mining enterprises. Kachestvo mineralnogo syria, 323-331. [Google Scholar]
  8. Kalinichenko, V.O., Dolgikh, O.V., & Dolgikh, L.V. (2019). Digital survey in studying open pit wall deformations. E3S Web of Conferences, (123), 01047. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Dolgikh A.V., & Dolgikh L.V. (2019). Definition of the ground surface deformations and constructions in the rock breakage zone. Traditions and innovations of resource-saving technologies in mineral mining and processing. Multi-authored monograph (pp. 300-309). Petrosani, Romania: UNIVERSITAS Publishing. [Google Scholar]
  10. Dolgikh O., & Dolgikh L. (2020). The study of the collapse zone by remote methods. E3S Web of Conferences, (166), 03002. [CrossRef] [EDP Sciences] [Google Scholar]
  11. Wang, F., Jiang, B., Chen, S., & Ren, M. (2019). Surface collapse control under thick unconsolidated layers by backfilling strip mining in coal mines. International Journal of Rock Mechanics and Mining Sciences, (113), 268-277. [CrossRef] [Google Scholar]
  12. Luan, H., Lin, H., Jiang, Y., Wang, Y., Liu, J., & Wang, P. (2018). Risks Induced by Room Mining Goaf and Their Assessment: A Case Study in the Shenfu-Dongsheng Mining Area. Sustainability, 10(3), 631. [Google Scholar]
  13. Hu, W.P. (2018). Comparative analysis on the numerical simulation and actual observation of surface movement in strip mining. Shaanxi Coal Min., (37), 91-94. [Google Scholar]
  14. Guo, G., Li, H., & Zha, J. (2019). An approach to protect cultivated land from subsidence and mitigate contamination from colliery gangue heaps. Process Safety and Environmental Protection, (124), 336-344. [CrossRef] [Google Scholar]
  15. Kayabasi, A., Yesiloglu-Gultekin, N., & Gokceoglu, C. (2015). Use of non-linear prediction tools to assess rock mass permeability using various discontinuity parameters. Engineering Geology, (185), 1-9. [Google Scholar]
  16. Howladar, M.F., & Hasan, K. (2014). A study on the development of subsidence due to the extraction of 1203 slice with its associated factors around Barapukuria underground coal mining industrial area, Dinajpur, Bangladesh. Environmental Earth Sciences, 72(9),3699-3713. [Google Scholar]
  17. Deng, K.Z, Tan, Z.X, Jiang, Y., Dai, H.Y., Shi, Y., & Xu, L.J. (2014). Deformation Monitoring and Subsidence Engineering. Xuzhou: China University of Mining and Technology Press. [Google Scholar]
  18. Fathi Salmi, E., Nazem, M., & Karakus, M. (2017). Numerical analysis of a large landslide induced by coal mining subsidence. Engineering Geology, (217), 141-152. [Google Scholar]
  19. Guo, W.B., & Xu, F.Y. (2015). Feasibility study on structures reconstruction in mining-affected areas. Journal Henan Polytechnic University, (34), 433-437. [Google Scholar]
  20. Diao, X., Wu, K., Zhou, D., Wang, J., Duan, Z., & Yu, Z. (2019). Combining subsidence theory and slope stability analysis method for building damage assessment in mountainous mining subsidence regions. PLOS ONE, 14(2), e0210021. [CrossRef] [PubMed] [Google Scholar]
  21. Chen, C., Hu, Z., Wang, J., & Jia, J. (2019). Dynamic Surface Subsidence Characteristics due to Super-Large Working Face in Fragile-Ecological Mining Areas: A Case Study in Shendong Coalfield, China. Advances in Civil Engineering, 2019, 1-16. [Google Scholar]
  22. Liang, B., Yue, C., Chen, X. H., Wang, B., & Sun, X. K. (2014). The Study of Deformation Monitoring Based on the Ground Three-Dimensional Laser Scanning Technology. Advanced Materials Research, (1022), 387-391. [Google Scholar]
  23. Diao, X., Bai, Z., Wu, K., Zhou, D., & Li, Z. (2018). Assessment of mining-induced damage to structures using InSAR time series analysis: a case study of Jiulong Mine, China. Environmental Earth Sciences, 77(5). [Google Scholar]
  24. Strzałkowski, P. (2019). Some Remarks on Impact of Mining Based on an Example of Building Deformation and Damage Caused by Mining in Conditions of Upper Silesian Coal Basin. Pure and Applied Geophysics, 176(6),2595-2605. [Google Scholar]
  25. Diao, X., Wu, K., Hu, D., Li, L., & Zhou, D. (2016). Combining differential SAR interferometry and the probability integral method for three-dimensional deformation monitoring of mining areas. International Journal of Remote Sensing, 37(21),5196-5212. [Google Scholar]
  26. Benton, D., Iverson, S., Johnson, J., & Martin, L. (2014). Photogrammetric monitoring of rock mass behavior in deep vein mining. In 33rd International Conference on Ground Control in Mining (pp. 221-227). Morgantown, USA: West Virginia University. [Google Scholar]
  27. Benton, D.J., Warren, S.N., Sunderman, C.B., & Richardson, J.R. (2018). A novel application of photogrammetry to ground convergence monitoring in underground excavations. Novel Optical Systems Design and Optimization XXI. [Google Scholar]
  28. Mutke, G., Kotyrba, A., Lurka, A., Olszewska, D., Dykowski, P., Borkowski, A., … Barański, A. (2019). Upper Silesian Geophysical Observation System A unit of the EPOS project. Journal of Sustainable Mining, 18(4),198-207. [CrossRef] [Google Scholar]
  29. Ou, D., Tan, K., Du, Q., Chen, Y., & Ding, J. (2018). Decision Fusion of D-InSAR and Pixel Offset Tracking for Coal Mining Deformation Monitoring. Remote Sensing, 10(7), 1055. [Google Scholar]
  30. Pawluszek-Filipiak, K., & Borkowski, A. (2020). Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydułtowy Mine in Poland. Remote Sensing, 12(2), 242. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.