Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01027
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202020101027
Published online 23 October 2020
  1. Mineralni resursy Ukrainy. (2018). Kyiv: Derzhavnyi informatsiinyi heolohichnyi fond Ukrainy. Iron-ore deposits of Ukraine. (2018). Retrieved from https://www.photoukraine.com/russian/articles?id=171) [Google Scholar]
  2. Shatokha, V. (2015). The sustainability of the iron and steel industries in Ukraine: challenges and opportunities. Journal of Sustainable Metallurgy, 2(2),106-115. https://doi.org/10.1007/s40831-015-0036-2 [CrossRef] [Google Scholar]
  3. Hrinov, V., & Khorolskyi, A. (2018). Improving the process of coal extraction based on the parameter optimization of mining equipment. E3S Web of Conferences, (60), 00017. https://doi.org/10.1051/e3sconf/20186000017 [CrossRef] [EDP Sciences] [Google Scholar]
  4. Sadovenko, I., Inkin, O., & Zagrytsenko, A. (2016). Theoretical and geotechnological fundamentals for the development of natural and man-made resources of coal deposits. Mining of Mineral Deposits, 10(4),1-10. https://doi.org/10.15407/mining10.04.001 [CrossRef] [Google Scholar]
  5. Timoshuk, V., Tishkov, V., Inkin, O., & Sherstiuk, E. (2012). Influence of coal layers gasification on bearing rocks. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 109-113. https://doi.org/10.1201/b13157-19 [CrossRef] [Google Scholar]
  6. Stupnik, M., Kalinichenko, O., Kalinichenko, V., Pysmennyi, S., & Morhun, O. (2018). Choice and substantiation of stable crown shapes in deep-level iron ore mining. Mining of Mineral Deposits, 12(4), 56-62. https://doi.org/10.15407/mining12.04.056 [CrossRef] [Google Scholar]
  7. Byzylo, V., Koshka, O., Poymanov, S., & Malashkevych, D. (2015). Resource-saving technology of selective mining with gob backfilling. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 485-491. https://doi.org/10.1201/b19901-84 [CrossRef] [Google Scholar]
  8. Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., & Sai, K. (2019). Review of man- made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1),24-38https://doi.org/10.33271/mining13.01.024 [CrossRef] [Google Scholar]
  9. Kuz’menko, A., Furman, A., & Usatyy, V. (2010). Improvement of mining methods with consolidating stowing of iron-ore deposits on big depths. New Techniques and Technologies in Mining, 131-136. https://doi.org/10.1201/b11329-22 [CrossRef] [Google Scholar]
  10. Petlovanyi, M., & Mamaikin, O. (2019). Assessment of an expediency of binder material mechanical activation in cemented rockfill. ARPN Journal of Engineering and Applied Sciences, 14(20),3492-3503. [CrossRef] [Google Scholar]
  11. Bini, C., Maleci, L., & Wahsha, M. (2017). Mine waste: assessment of environmental contamination and restoration. Assessment, Restoration and Reclamation of Mining Influenced Soils, 89-134. https://doi.org/10.1016/b978-0-12-809588-1.00004-9 [CrossRef] [Google Scholar]
  12. Popovych, V., Telak, J., Telak, O., Malovanyy, M., Yakovchuk, R., & Popovych, N. (2020). Migration of hazardous components of municipal landfill leachates into the environment. Journal of Ecological Engineering, 21(1),52-62. https://doi.org/10.12911/22998993/113246 [CrossRef] [Google Scholar]
  13. Medianyk, V., Netecha, M., & Demchenko, Y. (2015). Integrated production and utilization of mineral resources. Mining of Mineral Deposits, 9(1),93-100.https://doi.org/10.15407/mining09.01.093 [CrossRef] [Google Scholar]
  14. Petlovanyi, M.V., & Medianyk, V.Y. (2018). Assessment of coal mine waste dumps development priority. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 28-35.https://doi.org/10.29202/nvngu/2018-4/3 [CrossRef] [Google Scholar]
  15. Forster, K., Milne, D., & Pop, A. (2007). Mining and rock mass factors influencing hangingwall dilution. Rock Mechanics: Meeting Society’s Challenges and Demands, 1361-1366. https://doi.org/10.1201/noe0415444019-c169 [CrossRef] [Google Scholar]
  16. Pysmennyi, S., Brovko, D., Shwager, N., Kasatkina, I., Paraniuk, D., & Serdiuk, O. (2018). Development of complex-structure ore deposits by means of chamber systems under conditions of the Kryvyi Rih iron ore field. Eastern-European Journal of Enterprise Technologies, 5(1(95)), 33-45.’https://doi.org/10.15587/1729-4061.2018.142483 [CrossRef] [Google Scholar]
  17. Khomenko, O., Kononenko, M., & Petlyovanyy, M. (2014). Investigation of stress-strain state of rock massif around the secondary chambers. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 241-245. https://doi.org/10.1201/b17547-43 [CrossRef] [Google Scholar]
  18. Stupnik, M., Kolosov, V., Pysmennyi, S., & Kostiantyn, K. (2019). Selective mining of complex stuctured ore deposits by open stope systems. E3S Web of Conferences, (123), 01007. https://doi.org/10.1051/e3sconf/201912301007 [CrossRef] [EDP Sciences] [Google Scholar]
  19. Henning, J.G., & Mitri, H.S. (2007). Numerical modelling of ore dilution in blasthole stoping. International Journal of Rock Mechanics and Mining Sciences, 44(5), 692-703.https://doi.org/10.1016/j.ijrmms.2006.11.002 [CrossRef] [Google Scholar]
  20. Xia, K., Chen, C., Zheng, Y., Zhang, H., Liu, X., Deng, Y., & Yang, K. (2019). Engineering geology and ground collapse mechanism in the Chengchao iron-ore mine in China. Engineering Geology, (249), 129-147. https://doi.org/10.1016/j.enggeo.2018.12.028 [Google Scholar]
  21. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 265-269. https://doi.org/10.1201/b19901-47 [CrossRef] [Google Scholar]
  22. Villegas, T., Nordlund, E., & Dahner-Lindqvist, C. (2011). Hangingwall surface subsidence at the Kiirunavaara Mine, Sweden. Engineering Geology, 121(1-2), 18-27.https://doi.org/10.1016/i.enggeo.2011.04.01Q [Google Scholar]
  23. Lyashenko, V.I., & Golik, V.I. (2014). Remedies for geomechanical monitoring of a rock massif in underground development of ore deposits. Gornyi Zhurnal, (5), 47-51. [Google Scholar]
  24. Khorolskyi, A., Hrinov, V., Kaliushenko, O. (2019). Network models for searching for optimal economic and environmental strategies for field development. Procedia Environmental Science, Engineering and Management, 6(3),463-471. [Google Scholar]
  25. Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/ssp.277.221 [CrossRef] [Google Scholar]
  26. Bondarenko, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 21-28.https://doi.org/10.29202/nvngu/2018-2/4 [CrossRef] [Google Scholar]
  27. Chistyakov, E., Ruskih, V., & Zubko, S. (2012). Investigation of the geomechanical processes while mining thick ore deposits by room systems with backfill of worked-out area. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 127-132. https://doi.org/10.1201/b13157-23 [CrossRef] [Google Scholar]
  28. Emad, M.Z., Vennes, I., Mitri, H., & Kelly, C. (2014). Backfill practices for sublevel stoping system. Mine Planning and Equipment Selection, 391-402. https://doi.org/10.1007/978-3-319-02678-7_38 [CrossRef] [Google Scholar]
  29. Fu, Z. (2018). The mechanism of imported iron ore price in China. Modern Economy, 09(11), 1908-1931. https://doi.org/10.4236/me.2018.911120 [CrossRef] [Google Scholar]
  30. Petlovanyi, M. (2016). Influence of configuration chambers on the formation of stress in multimodulus mass. Mining of Mineral Deposits, 10(2),48-54.https://doi.org/10.15407/mining10.02.048 [CrossRef] [Google Scholar]
  31. Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2),1-11. https://doi.org/10.15407/mining11.02.001 [CrossRef] [Google Scholar]
  32. Zhan, F.L., & Ye, P. (2014). Construction techniques and mechanism of pre-anchoring fissured stope hangingwall by fully-grouted cable bolts. Applied Mechanics and Materials, (580-583), 283-286. https://doi.org/10.4028/www.scientific.net/amm.580-583.283 [Google Scholar]
  33. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The influence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91. https://doi.org/10.17794/rgn.2019.1.8 [Google Scholar]
  34. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, CoalbedMethane, and Ores Mining, 465-469. https://doi.org/10.1201/b17547-79 [CrossRef] [Google Scholar]
  35. Zhao, X., & Niu, J. (2020). Method of predicting ore dilution based on a neural network and its application. Sustainability, 12(4), 1550. https://doi.org/10.3390/su12041550 [Google Scholar]
  36. Russkikh, V.V., Lapko, V.V., & Zubko, S.A. (2012). Development and adoption of new technical decisions for development of Yuzhno-Belozerskoye ore deposit under difficult mining and geological conditions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 34-38. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.