Open Access
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01038
Number of page(s) 10
Published online 23 October 2020
  1. Pivnyak, G. G., & Shashenko, O. M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121. [Google Scholar]
  2. Sribna, Y., Trokhymets, O., Nosatov, I., & Kriukova, I. (2019). The globalization of the world coal market - contradictions and trends. E3S Web of Conferences, (123), 01044. [CrossRef] [EDP Sciences] [Google Scholar]
  3. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (Eds.). (2015). New Developments in Mining Engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. [Google Scholar]
  4. Belov, O., Shustov, O., Adamchuk, A. & Hladun, O. (2018). Complex processing of brown coal in Ukraine: history, experience, practice, prospects. Solid State Phenomena, (277), 251-268. doi:https:10.4028/ [CrossRef] [Google Scholar]
  5. Savchuk, V., Prykhodchenko, V., Buzylo, V., Prykhodchenko, D., & Tykhonenko, V. (2013). Complex use of coal of Northern part of Donbass. Annual Scientific-Technical Collection - Mining of Mineral Deposits, 185-191. [CrossRef] [Google Scholar]
  6. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y. & Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3(10(87)), 63-73. [Google Scholar]
  7. Shmandiy, V., Bezdeneznych, L., Kharlamova, O. at al (2017). Methods of salt content stabilization in circulating water supply systems. Chemistry & Chemical Technology, 11 (2),242246. [CrossRef] [Google Scholar]
  8. Kharytonov M.M. & Kroik A.A. (2011). Environmental Security of Solid Wastes in the Western Donbas Coal Mining Region, Ukraine. Environmental Security and Ecoterrorism, NATO Science for Peace and Security Series C: Environmental Security, H. Alpaset al. (eds.), 129-138. [Google Scholar]
  9. Khomenko, O., Kononenko, M., Myronova, I., & Savchenko, M. (2019). Application of the emulsion explosives in the tunnels construction. E3S Web of Conferences, (123), 01039. [CrossRef] [EDP Sciences] [Google Scholar]
  10. Cherniaiev, O.V. (2017). Systematyzatsiia nerudnykh rodovyshch skelnykh korysnykh kopalyn dlia vdoskonalennia tekhnolohii yikh vidpratsiuvannia. Naukovyi VisnykNHU, (5), 11-17. [Google Scholar]
  11. Kolesnyk, V., Kulikova, D. & Kovrov, S. (2013). In-stream settling tank for effective mine water clarification. Annual Scientific-Technical Collection - Mining of Mineral Deposits, 285-289. [CrossRef] [Google Scholar]
  12. Shmandiy, V., Bezdeneznych, L., Kharlamova, O. et al. (2017). Methods of salt content stabilization in circulating water supply systems, Chemistry and Chemical Technology, 11(2), 242-246. [Google Scholar]
  13. Zelenko, Y., Malovanyy, M., & Tarasova, L. (2019). Optimization of heat-and-power plants water purification, Chemistry and Chemical Technology, 13(2),218-223. [CrossRef] [Google Scholar]
  14. Adamenko, Y.O., Arkhypova, L.M., & Mandryk, O.M. (2017). Territorial normative of quality of hydroecosystems of protected territories, Hydrobiological Journal, (53), 50-58. [Google Scholar]
  15. Mandryk, O.M., Arkhypova, L.M., Pukish, A.V., Zelmanovych, A., & Yakovlyuk, K. (2017). Theoretical and methodological foundations of sustainable development of Geosystems. IOP Conference Series: Materials Science and Engineering, (200), 012018 [CrossRef] [Google Scholar]
  16. Golinko, V. I., Yavorskaya, E. A., Cheberyachko, Y. I., Cheberyachko, S. I. (2015). Analysis of protective value of dust-fighting respirators and its effect on dust burden of miners. Gornyi Zhurnal, 76-80. [CrossRef] [Google Scholar]
  17. Klimkina, I., Kharytonov, M., Zhukov, O. (2018). Trend analysis of water-soluble salts vertical migration in technogenic edaphotops of reclaimed mine dumps in Western Donbas (Ukraine). Environmental Research, Engineering and Management, 74(2), 82-93 [CrossRef] [Google Scholar]
  18. Vambol, S., Vambol, V., Sundararajan, M., & Ansari, I. (2019). The nature and detection of unauthorized waste dump sites using remote sensing. Ecological Questions, 30(3)3). [CrossRef] [Google Scholar]
  19. Popovych, V., Kuzmenko, O., Voloshchyshyn, A., & Petlovanyi, M. (2018). Influence of man- made edaphotopes of the spoil heap on biota. E3S Web of Conferences, (60), 00010. [CrossRef] [EDP Sciences] [Google Scholar]
  20. Gomelya, M.D., Trus, I.M. & Radovenchyk, I.V. (2014). Influence of stabilizing water treatment on weak acid cation exchange resin in acidic form on quality of mine water nanofiltration desalination. Naukovyi VisnykNatsionalnohoHirnychoho Universytetu, (5), 100-105. [Google Scholar]
  21. Kvaterniuk, S., Pohrebennyk, V., Petruk, V., Kvaterniuk, O., & Kochanek, A. (2018). Mathematical modeling of light scattering in natural water environments with phytoplankton particles, 18th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18(2.1), 545-552. [Google Scholar]
  22. Melnyk, L., Bessarab, O., Matko, S. & Malovanyy, M. (2015). Adsorption of Heavy Metals Ions from Liquid Media by Palygorskite. Chemistry & Chemical Technology, 9(4),467-470. [CrossRef] [Google Scholar]
  23. Moshynsky, V. (2001). Modern water conditions in the northwest part of Ukraine: An analysis. Water Engineering and Management, 148(4),22-26 [Google Scholar]
  24. Kolesnik, V.Ye., Fedotov, V.V. & Buchavy, Yu.V. (2012). Generalized algorithm of diversification of waste rock dump handling technologies in coal mines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 138-142. [Google Scholar]
  25. Pivniak, H.H., Pilov, P.I., Pashkevych, M.S., & Shashenko, D.O. (2012). Synchro-mining: Civilized solution of problems of mining regions’ sustainable operation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 131-138. [Google Scholar]
  26. Litvinov, Y., Terekhov, Y., & Fenenko, V. (2019). Improvement of open field development technology as a factor in the formation of quality and market value of reclaimed land. E3S Web of Conferences, (123), 01045. [CrossRef] [EDP Sciences] [Google Scholar]
  27. Sobko B., Lozhnikov O., Levytskyi V., & Skyba G. (2019). Conceptual development of the transition from drill and blast excavation to non-blasting methods for the preparation of mined rock in surface mining. Rudarsko Geolosko Naftni Zbornik, 34(3),21-28. [CrossRef] [Google Scholar]
  28. Zadorozhnaya, G.A., Andrusevych, K.V., & Zhukov, O.V. (2018). Soil heterogeneity after recultivation: ecological aspect. Folia Oecologica, 45: 46-52. [CrossRef] [Google Scholar]
  29. Golovchenko, A. (2020). Some Aspects of the Control for the Radial Distribution of Burden Material and Gas Flow in the Blast Furnace. Energies, 13(4), 923. [Google Scholar]
  30. Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37-42 [Google Scholar]
  31. Falshtynskyi, V.S., Dychkovskyi, R.O., Lozynskyi, V.G., & Saik, P.B. (2013). Determination of the Technological Parameters of Borehole Underground Coal Gasification for Thin Coal Seams. Journal of Sustainable Mining, 12(3),8-16. [CrossRef] [Google Scholar]
  32. Sobolev, V. (2020). Reasons for breaking of chemical bonds of gas molecules during movement of explosion products in cracks formed in rock mass. International Journal of Mining Science [Google Scholar]
  33. Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30-36. [Google Scholar]
  34. Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik, P.B. (2015). Eksperymentalni doslidzhennia vplyvu perekhodu dyziunktyvnoho heolohichnoho porushennia na temperaturnyi rezhym pidzemnoho hazoheneratora. Naukovyi VisnykNHU, (4), 22-28. [Google Scholar]
  35. Soboliev, V., Bilan, N, & Samovik, D. (2013). Magnetic stimulation of transformations in coal. Annual Scientific-Technical Collection - Mining of Mineral Deposits, 221-225. [CrossRef] [Google Scholar]
  36. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Colletion - Mining of Mineral Deposit, 231-235. [Google Scholar]
  37. Bondarenko, V., Kovalevs’ka, I., Svystun, R., & Cherednichenko, Y. (2013). Optimal parameters of wall bolts computation in the united bearing system of extraction workings frame- bolt support. Annual Scientific-Technical Collection - Mining of Mineral Deposits 2013, 5-9. [CrossRef] [Google Scholar]
  38. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. [CrossRef] [Google Scholar]
  39. Kolosov, D., Bilous, O., Tantsura, H., & Onyshchenko, S. (2018). Stress-strain state of a flat tractive-bearing element of a lifting and transporting machine at operational changes of its parameters. Solid State Phenomena, (277), 188-201. [CrossRef] [Google Scholar]
  40. Belmas, I., & Kolosov, D. (2011). The stress-strain state of the stepped rubber-rope cable in bobbin of winding. Technical and Geoinformational Systems in Mining, 211-214. [CrossRef] [Google Scholar]
  41. Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47),74-78. [Google Scholar]
  42. Buzylo V., Yavorsk’yy, A. Yavorsk’yy. V. (2012). Analysis of stress-strain state of rock mass while mining chain pillars by chambers. Geomechanical Processes during Underground Mining, 95-98. [CrossRef] [Google Scholar]
  43. Shashenko, O.M., & Kovrov, O.S. (2016). Comparative analysis of two failure criteria for rocks and massifs. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 54-59. [Google Scholar]
  44. Popovych, V., & Voloshchyshyn, A. (2019). Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of National Academy of Sciences of the Republic of Kazakhstan, 4(436),230-237. [CrossRef] [Google Scholar]
  45. Buzylo, V., Savelieva, T., & Saveliev, V. (2012). Study of rock displacement with the help of equivalent materials using room-and-pillar mining method. Geomechanical Processes During Underground Mining, 29-34. [CrossRef] [Google Scholar]
  46. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., Tereshchuk, R.M. (2017). Otsinka stiikosti masyvu hirskykh porid, shcho bazuietsia na ymovirnisnomu pidkhodi ta reitynhovykh klasyfikatsiiakh. Naukovyi visnyk NHU, (2), 58-64. [Google Scholar]
  47. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining, 147-150. [CrossRef] [Google Scholar]
  48. Mambetov, S.A., Mambetov, A.S., & Abdiev, A.R. (2002). Zonal and step-by-step evaluation of the stressed-strained state of Tyan’-Shan’ rock massif. Gornyi Zhurnal, (10), 57-62. [Google Scholar]
  49. Buzylo, V., Pavlychenko, A., Borysovska, O., & Saveliev, D. (2019). Investigation of processes of rocks deformation and the earth’s surface subsidence during underground coal mining. E3S Web of Conferences, (123), 01050. [CrossRef] [EDP Sciences] [Google Scholar]
  50. Buzylo, V., Pavlychenko, A., Savelieva, T., Borysovska, O. (2018). Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. E3S Web of Conferences, (60), 00013. [CrossRef] [EDP Sciences] [Google Scholar]
  51. Borisovskaya, Ye.A., & Fedotov, V.V. (2014). Improvement of the method of danger class definition of coal-mining solid wastes, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 130-137. [Google Scholar]
  52. Halysh, V., Trus, I., Gomelya, M. at al (2020). Utilization of modified biosorbents based on walnut shells in the processes of wastewater treatment from heavy metal ions. Journal of Ecological Engineering, 21(4),128-133. [Google Scholar]
  53. Ovchynnikova, O., Dupliak, O., & Khan, O. (2020). Modelling and forecasting of the region’s environmental indicators. E3S Web of Conferences, (166), 13004. [CrossRef] [EDP Sciences] [Google Scholar]
  54. Kharytonov, M.M., Stankevich, S.A., Titarenko, O.V. at al (2020). Geostatistical and geospatial assessment of soil pollution with heavy metals in Pavlograd city (Ukraine). Ecological Questions, 31(2),47-61. [Google Scholar]
  55. Tregub, M., & Trehub, Y. (2015). Substantiation of land management methods of industrial cities. New Developments in Mining Engineering, 449-452. [Google Scholar]
  56. Malovanyy, M., Lyashok, Y., Podkopayev, S., at al (2020). Environmental technologies for use of coal mining and chemical industry wastes. Journal of Ecological Engineering, 21(2),85-93. [Google Scholar]
  57. Gorova, A., Pavlychenko, A., & Borysovs’Ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 169-172. [Google Scholar]
  58. Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining, 35-40. [CrossRef] [Google Scholar]
  59. Abdykaparov, C.M., & Abdiev, A.R. (2002). State and prospects of the development the brown coal deposit in Kara-Keche. Gornyi Zhurnal, (10), 16-19. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.