Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01039
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202020101039
Published online 23 October 2020
  1. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining, 523 p. Book. https://doi.org/10.1201/b17547 [Google Scholar]
  2. Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2), 41-47. https://doi.org/10.1016/j.jsm.2018.03.004 [CrossRef] [Google Scholar]
  3. Cherniaiev, O.V. (2017). Systematyzatsiia nerudnykh rodovyshch skelnykh korysnykh kopalyn dlia vdoskonalennia tekhnolohii yikh vidpratsiuvannia. Naukovyi Visnyk NHU, (5), 11-17. [Google Scholar]
  4. Mikhlin, Y. V., & Zhupiev, A. L. (1997). An application of the ince algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409. https://doi.org/10.1016/s0020-7462(96)00047-9 [Google Scholar]
  5. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Collection - Mining of Mineral Deposits, 197-201. https://doi.org/10.1201/b16354-35 [CrossRef] [Google Scholar]
  6. Lomonosov, G.G., & Turtygina, N.A. (2008). Sistematizatsiya sposobov stabilizatsii sostava rudnoy massy v podzemnom rudnike. Gornyy informatsionno-analiticheskiy byulleten’, (12), 120-122. [Google Scholar]
  7. Seredkin, M., Zabolotsky, A., Jeffress, G. (2016) In situ recovery, an alternative to conventional methods of mining: Exploration, resource estimation, environmental issues, project evaluation and economics. Ore Geology Reviews, (79), 500-514. [Google Scholar]
  8. Arshamov, Y., Seitmuratova, E., & Baratov, R. (2015). Perspectives of porphyry copper mineralizations in Zhongar-Balkhash fold system (Kazakhstan). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 345-350. [Google Scholar]
  9. Kebede, Ch.D. (2004). Issledovanie i razvitie kombinirovannoy (otkrytopodzemnoy) geotekhnologii s uchetom kachestva rudy i ekologicheskikh posledstviy. PhD Thesis. Moskva: MGGU. [Google Scholar]
  10. Gusmanov, F.F., & Papunin, A.O. (2016). Problemy i zadachi gornorudnoy promyshlennosti v upravlenii kachestvom produktsii gornogo proizvodstva. Ural’skaya gornaya shkola-regionam, 374-375. [Google Scholar]
  11. Rudko, G.I., Netskyi, O.V., & Nazarenko, M.V. (2018). The use of geoinformation technologies in economic-geological evaluation of mineral reserves (by the example of K-MINE GIS). 17th International Conference on Geoinformatics - Theoretical and Applied Aspects. https://doi.org/10.3997/2214-4609.201801752 [Google Scholar]
  12. Makarov, V.A. (2017) Razrabotka intellektual’noy tekhnologii monitoringa i upravleniya kachestvom rudopotokov pri dobyche i pererabotke mnogokomponentnykh rud. Sovremennye problemy kompleksnoypererabotki trudnoobogatimykh rud i tekhnogennogo syr’ya, 7-10. [Google Scholar]
  13. Shashenko, A., Gapieiev, S., Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348. [Google Scholar]
  14. Stupnik, M., Kolosov, V., Kalinichenko, V., Pismennyi, S. (2014). Physical modeling of waste inclusions stability during mining of complex structured deposits. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 25-30. https://doi.org/10.1201/b17547. [CrossRef] [Google Scholar]
  15. Malanchuk, Z., Moshynskyi, V., Stets, S., Ignatiuk, I., & Galiyev, D. (2020). Modelling hydraulic mixture movement along the extraction chamber bottom in case of hydraulic washout of the puffstone. E3S Web of Conference. Preprint. [Google Scholar]
  16. Dychkovskyi, R., Vladyko, O., Maltsev, D., Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geolosko-Naftni Zbornik, 33(4),73-82. https://doi.org/10.17794/rgn.2018A7 [CrossRef] [Google Scholar]
  17. Turtygina N.A. (2009) Obosnovanie sistemy stabilizatsii kachestva bednykh medno-nikelevykh rud pri podzemnoy dobyche. Doctoral dissertation, M.: MGGU, 26 [Google Scholar]
  18. Khugaeva, G. N. (2011). Sostoyanie voprosov usredneniya rudy i planirovaniya gornykh rabot na podzemnykh rudnikakh. Gornyy informatsionno-analiticheskiy byulleten’, (10), 211-215. [Google Scholar]
  19. Mustafin, S.A., Duisen, G.M., Zeinullin, A.A., Korobova, E.V. (2019). Evaluation of the choice of borrower rating groups. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 6(438). https://doi.org/10.32014/2019.2518-170X.166 [Google Scholar]
  20. Kozhiev, Kh.Kh. (2005). Klassifikatsiya sposobov upravleniya kachestvom rud pri podzemnoy dobyche. Gornyy informatsionno-analiticheskiy byulleten’, (8), 11-13. [Google Scholar]
  21. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 2332. https://doi.org/10.17794/rgn.2020.2.3 [Google Scholar]
  22. Everett, J. (2010). Simulation Modeling of an Iron Ore Operation to Enable Informed Planning. Interdisciplinary Journal of Information, Knowledge, and Management, (5), 101-114. https://doi.org/10.28945/1126 [CrossRef] [Google Scholar]
  23. Everett, J. (2013). Planning an Iron Ore Mine: From Exploration Data to Informed Mining Decisions. Issues in Informing Science and Information Technology, (10), 145-162. https://doi.org/10.28945/1802 [CrossRef] [Google Scholar]
  24. Pakhomov, V.P., & Atamanova, Y.A. (2013). Complex assessment of mineral resources in the conditions of spatial subsurface use. Economy of Region, 69-80. https://doi.org/10.17059/2013-1-6 [CrossRef] [Google Scholar]
  25. Kozhiev, Kh.Kh., & Khugaeva, G.N. (2010). Sposoby upravleniya kachestvom rud pri podzemnoy dobyche. Gornyy informatsionno-analiticheskiy byulleten’, (4), 24-38 [Google Scholar]
  26. Ibrahimov, M., Mohais, A., Schellenberg, S., & Michalewicz, Z. (2014). Scheduling in iron ore open-pit mining. The International Journal of Advanced Manufacturing Technology, 72(5-8), 1021-1037. https://doi.org/10.1007/s00170-014-5619-8 [CrossRef] [Google Scholar]
  27. Abdiev A., Mambetova, R., Abdiev, A., & Abdiev S. (2020). Development of methods for assessing the mine workings stability. E3S Web of Conference. Preprint. [Google Scholar]
  28. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(13),599-606. https://doi.org/10.5593/sgem2017/13/s03.076 [Google Scholar]
  29. Richard, A., & Sulemana, A.H. (2015). Ore grade reconciliation techniques - a review. Journal of Geosciences, 3(5),116-121. [Google Scholar]
  30. Abdykaparov, C.M., & Abdiev, A.R. (2002). State and prospects of the development the brown coal deposit in Kara-Keche. Gornyi Zhurnal, (10), 16-19. [Google Scholar]
  31. Vladyko, O., Kononenko, M., & Khomenko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining, 147-150. https://doi.org/10.1201/b13157-26 [CrossRef] [Google Scholar]
  32. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., Tereshchuk, R.M. (2017). Otsinka stiikosti masyvu hirskykh porid, shcho bazuietsia na ymovirnisnomu pidkhodi ta reitynhovykh klasyfikatsiiakh. Naukovyi visnykNatsionalnoho Hirnychoho Universytetu, (2), 58-64. [Google Scholar]
  33. Pshennikov, V.A. (2006). Izuchenie protsessa usredneniya rud pri razrabotke uranovykh mestorozhdeniy. Gornyy informatsionno-analiticheskiy byullete’, (11), 37-34. [Google Scholar]
  34. Koppelaar, R. H. E. M., & Koppelaar, H. (2016). The ore grade and depth influence on copper energy inputs. Biophysical Economics and Resource Quality, 1(2), 11. [CrossRef] [Google Scholar]
  35. Golik, V.I., Razorenov, Y.I., & Lyashenko, V.I. (2018). Conditions of leaching non-ferrous metals from non-commercial reserves. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 329(6), 6-16. [Google Scholar]
  36. Lyashenko, V. (2018). Safety Improving of Mine Preparation Works at the Ore Mines. Bezopasnost’ Truda v Promyshlennosti, (5), 53-59. https://doi:10.24000/0409-2961-2018-5-53-59 [Google Scholar]
  37. Kieush, L., Yaholnyk, M., Boyko, M., Koveria, A., & Ihnatenko, V. (2019). Study of biomass utilisation in the iron ore sintering. Acta Metallurgica Slovaca, 25(1), 55. [CrossRef] [Google Scholar]
  38. Kalybekov, T., Rysbekov, K.B., Soltabaeva, S.T., & Tursbekov, S.V. (2019). Izuchenie vliyaniyausredneniya rud na obosnovanie podgotovlennosti zapasov na gornykh rabotakh. Vestnik Kyrgyzsko-Rossiyskogo slavyanskogo universiteta, 19(4),86-92. [Google Scholar]
  39. Kalybekov, T., Rysbekov, K.B., Toktarov, A.A., & Otarbaev, O.M. (2019). Underground mine planning with regard to preparedness of mineral reserves. Mining Informational and Analytical Bulletin, (5), 34-43. [CrossRef] [Google Scholar]
  40. Kalybekov, T., Rysbekov, K.B., & Soltabayeva, S.T. (2018). The study of the influence of preparedness of the ore reserves on the planning of underground mining operations. Innovative Development of Resource-Saving Technologies of Mineral Mining and Processing, 26-28. [Google Scholar]
  41. Kalybekov, T., Yunussov, R., Rysbekov, K.B., & Soltabayeva, S.T. (2018). Control of reserves readiness and quality characteristics of ore in open pit mining. World Mining Congress, 220. [Google Scholar]
  42. Rakishev, B. R., & Galiev, D. A. (2015). Optimization of the ore flow quality characteristics in the quarry in road-rail transport. Metallurgical and Mining Industry, 7(4),356-362. [Google Scholar]
  43. Raschet normativov zapasov rudy po stepeni podgotovlennosti podzemnykh rudnikov TOO “Korporatsiya Kazakhmys”. (2018) P 18-01/09-PZ. TOO “Korporatsiya Kazakhmys”. Golovnoy proektnyy institut- Zhezkazgan, 24. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.