Open Access
Issue
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
Article Number 14008
Number of page(s) 8
Section Decision Support System
DOI https://doi.org/10.1051/e3sconf/202020214008
Published online 10 November 2020
  1. W. Nkomoki, M. Bavorová, and J. Banout, “Adoption of sustainable agricultural practices and food security threats: Effects of land tenure in Zambia,” Land use policy, vol. 78, no. March, pp. 532–538, (2018). [Google Scholar]
  2. M. Ghoulem, K. El Moueddeb, E. Nehdi, R. Boukhanouf, and J. Kaiser Calautit, “Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status,” Biosyst. Eng., vol. 183, pp.121–150, (2019). [Google Scholar]
  3. K. Rangan and T. Vigneswaran, “An embedded systems approach to monitor green house,” Proc. Int. Conf. “Recent Adv. Sp. Technol. Serv. Clim. Chang. - 2010”, RSTS CC-2010, pp. 61–65, (2010). [Google Scholar]
  4. R. A. Li, X. Sha, and K. Lin, “Smart greenhouse: A real-time mobile intelligent monitoring system based on WSN,” IWCMC 2014 - 10th Int. Wirel. Commun. Mob. Comput. Conf., pp. 1152–1156, (2014). [Google Scholar]
  5. S. Suryono, S. Sunarno, and R. Saputra, “A Fog Networks for Measuring the Physical Parameter of Greenhouse Plant,” E3S Web Conf., vol. 73, pp. 1–5, (2018). [CrossRef] [Google Scholar]
  6. S. Pohan, B. Warsito, and S. Suryono, “Backpropagation artificial neural network for prediction plant seedling growth Backpropagation artificial neural network for prediction plant seedling growth,” J. Phys. Conf. Ser., vol. 1524, pp. 1–7, (2020). [Google Scholar]
  7. B. Khoshnevisan, S. Rafiee, M. Omid, and H. Mousazadeh, “Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system,” Meas. J. Int. Meas. Confed., vol. 47, no. 1, pp. 521–530, (2014). [CrossRef] [Google Scholar]
  8. A. Khosravi, R. N. N. Koury, L. Machado, and J. J. G. Pabon, “Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system,” Sustain. Energy Technol. Assessments, vol. 25, no. September 2017, pp. 146–160, (2018). [CrossRef] [Google Scholar]
  9. M. Oroian, “Influence of temperature, frequency and moisture content on honey viscoelastic parameters - Neural networks and adaptive neuro-fuzzy inference system prediction,” LWT - Food Sci. Technol., vol. 63, no. 2, pp. 1309–1316, (2015). [CrossRef] [Google Scholar]
  10. Z. Jiang et al., “Prediction of relationship between surface area, temperature, storage time and ascorbic acid retention of fresh-cut pineapple using adaptive neuro-fuzzy inference system (ANFIS),” Postharvest Biol. Technol., vol. 113, pp. 1–7, (2016). [Google Scholar]
  11. S. Jovic, J. Smigic Miladinovic, R. Micic, S. Markovic, and G. Rakic, “Analysing of exchange rate and gross domestic product (GDP) by adaptive neuro fuzzy inference system (ANFIS),” Phys. A Stat. Mech. its Appl., vol. 513, pp. 333–338, (2019). [CrossRef] [Google Scholar]
  12. M. Mostafaei, “Prediction of biodiesel fuel properties from its fatty acids composition using ANFIS approach,” Fuel, vol. 229, no. February, pp. 227–234, (2018). [Google Scholar]
  13. S. M. Shafaei, M. Loghavi, and S. Kamgar, “Appraisal of Takagi-Sugeno-Kang type of adaptive neuro-fuzzy inference system for draft force prediction of chisel plow implement,” Comput. Electron. Agric., vol. 142, no. September, pp. 406–415, (2017). [Google Scholar]
  14. R. Ata and Y. Kocyigit, “An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines,” Expert Syst. Appl., vol. 37, no. 7, pp. 5454–5460, (2010). [Google Scholar]
  15. D. Ma, N. Carpenter, H. Maki, T. U. Rehman, M. R. Tuinstra, and J. Jin, “Greenhouse environment modeling and simulation for microclimate control,” Comput. Electron. Agric., vol. 162, no. November 2018, pp. 134–142, (2019). [Google Scholar]
  16. R. Syam, W. H. Piarah, and B. Jaelani, “Controlling Smart Green House Using Fuzzy Logic Method,” Int. J. Smart Mater. Mechatronics, vol. 2, no. 2, pp. 116–120, (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.