Open Access
E3S Web Conf.
Volume 203, 2020
Ecological and Biological Well-Being of Flora and Fauna (EBWFF-2020)
Article Number 01029
Number of page(s) 10
Section Veterinary Well-Being of Fauna
Published online 05 November 2020
  1. J. Crawley, “Behavioral phenotyping strategies for mutant mice,” Neuron, 57, 809, (2018) doi: 10.1016/j.neuron.2008.03.001. [Google Scholar]
  2. R. Brandeis, Y. Brandys, and S. Yehuda, The use of the morris water maze in the study of memory and learning, International Journal of Neuroscience, 48, 1-2, 29–69, (1989) doi: 10.3109/00207458909002151. [CrossRef] [Google Scholar]
  3. J. Nunn, E. LePeillet, C. Netto, H. Hodges, and B. Meldrum, Global ischaemia: Hippocampal pathology and spatial deficits in the water maze, Behavioural Brain Research, 62, 41–54, (1994) [CrossRef] [PubMed] [Google Scholar]
  4. M. Gallagher and P. R. Rapp, THE use of animal models to study the effects of aging on cognition, Annual Review of Psychology, 48, 1, 339–370, (1997) doi: 10.1146/annurev.psych.48.1.339. [CrossRef] [PubMed] [Google Scholar]
  5. K. Bromley-Brits, Y. Deng, and W. Song, Morris water maze test for learning and memory deficits in alzheimer’s disease model mice, Journal of visualized experimentsб 53, (2011) doi: 10.3791/2920. [Google Scholar]
  6. S. Edwards, A. Hamlin, N. Marks, E. Coulson, and M. Smith, Comparative studies using the morris water maze to assess spatial memory deficits in two transgenic mouse models of alzheimer’s disease, Clinical and Experimental Pharmacology and Physiology, 41, (2014) doi: 10.1111/1440-1681.12277. [Google Scholar]
  7. K. Hsiao et al., Correlative memory deficits, abeta elevation, and amyloid plaques in transgenic mice, Science (New York, N.Y.), 274, 99–102, (1996) doi: 10.1126/science.274.5284.99. [CrossRef] [PubMed] [Google Scholar]
  8. M. Shariatpanahi et al., The involvement of protein kinase g inhibitor in regulation of apoptosis and autophagy markers in spatial memory deficit induced by aβ, Fundamental & Clinical Pharmacology, 30, 4, 364–375, 2016, doi: 10.1111/fcp.12196. [CrossRef] [PubMed] [Google Scholar]
  9. M. Wu et al., Colivelin ameliorates amyloid beta peptide-induced impairments in spatial memory, synaptic plasticity, and calcium homeostasis in rats, Hippocampus, 25, (2014) doi: 10.1002/hipo.22378. [Google Scholar]
  10. R. D’hooge and P. Deyn, Applications of the morris water maze in the study of learning and memory, Brain Research Reviews, 36, 60–90, 2001. [CrossRef] [PubMed] [Google Scholar]
  11. J. Kim, H. Lee, J.-S. Han, and M. Packard,“Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning, The Journal of neuroscience : the official journal of the Society for Neuroscience, 21, 5222–8, (2001) doi: 10.1523/JNEUROSCI.21-14-05222.2001. [CrossRef] [PubMed] [Google Scholar]
  12. C. Vorhees and M. Williams, Morris water maze: Procedures for assessing spatial and related forms of learning and memory, Nature protocols, 1, 848–58, (2006), doi: 10.1038/nprot.2006.116. [CrossRef] [PubMed] [Google Scholar]
  13. R. G. M. Morris, Spatial localization does not require the presence of local cues, Learning and Motivation, 12, 2, 239–260, 1981, doi: [Google Scholar]
  14. H. Maei, K. Zaslavsky, C. Teixeira, and P. Frankland, What is the most sensitive measure of water maze probe test performance? Frontiers in integrative neuroscience, 3, 4, (2009), doi: 10.3389/neuro.07.004.2009. [Google Scholar]
  15. R. J. Steele and R. Morris, Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the nmda-antagonist d-ap5. Hippocampus, 9, 2, 118–36, (1999) doi: 10.1002/(SICI)1098-1063(1999)9:2<118::AID-HIPO4>3.0.CO;2-8. [Google Scholar]
  16. K. Nakazawa et al., Requirement for hippocampal ca3 nmda receptors in associative memory recall, Science, 297, 5579, 211–218, (2002) doi: 10.1126/science.1071795. [Google Scholar]
  17. H. Lipp and D. Wolfer, Genetically modified mice and cognition, Current Opinion in Neurobiology, 8, 272–280, (1998) [CrossRef] [PubMed] [Google Scholar]
  18. R. G. M. Morris, J. J. Hagan, and J. N. P. Rawlins, Allocentric spatial learning by hippocampectomised rats: A further test of the ‘spatial mapping’ and ‘working memory’ theories of hippocampal function, The Quarterly Journal of Experimental Psychology Section B, 38, 4b, 365–395, (1986) doi: 10.1080/14640748608402242. [Google Scholar]
  19. V. Brun et al., Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry, Science (New York, N.Y.), 296, 2243–6, (2002), doi: 10.1126/science.1071089. [CrossRef] [PubMed] [Google Scholar]
  20. M. Gallagher, R. Burwell, and M. Burchinal, Severity of spatial learning impairment in aging: Development of a learning index for performance in the morris water maze, Behavioral Neuroscience, 129, 4, 540–548, (2015) doi: 10.1037/bne0000080. [CrossRef] [PubMed] [Google Scholar]
  21. T. Pereira and R. D. Burwell, Using the spatial learning index to evaluate performance on the water maze. Behavioral neuroscience, 129, 4, 533–9, (2015) [CrossRef] [PubMed] [Google Scholar]
  22. K. Harker and I. Whishaw, Impaired spatial performance in rats with retrosplenial lesions: Importance of the spatial problem and the rat strain in identifying lesion effects in a swimming pool, The Journal of neuroscience : the official journal of the Society for Neuroscience, 22, 1155–64, (2002) doi: 10.1523/JNEUROSCI.22-03-01155.2002. [CrossRef] [PubMed] [Google Scholar]
  23. Whishaw, Cholinergic receptor blockade in the rat impairs locale but not taxon strategies for place navigation in a swimming pool, Behavioral Neuroscience, 99, 979–1005, (1985) doi: 10.1037/0735-7044.99.5.979. [CrossRef] [PubMed] [Google Scholar]
  24. C. Bye, N. Hong, K. Moore, S. Deibel, and R. McDonald, The effects of pool shape manipulations on rat spatial memory acquired in the morris water maze, Learning & Behavior, 47, (2018), doi: 10.3758/s13420-018-0319-0. [Google Scholar]
  25. J. Rogers, L. Churilov, A. J. Hannan, and T. Renoir, Search strategy selection in the morris water maze indicates allocentric map formation during learning that underpins spatial memory formation, Neurobiology of Learning and Memory, 139, 37–49, (2017) doi: [CrossRef] [PubMed] [Google Scholar]
  26. Vouros et al., A generalised framework for detailed classification of swimming paths inside the morris water maze, Scientific Reports, 8, (2017) doi: 10.1038/s41598-018-33456-1. [Google Scholar]
  27. L. P. J. J. Noldus, A. J. Spink, and R. A. J. Tegelenbosch, EthoVision: A versatile video tracking system for automation of behavioral experiments, Behavior Research Methods, Instruments, & Computers, 33, 3, 398–414, 2001, doi: 10.3758/BF03195394. [CrossRef] [Google Scholar]
  28. E. Bello-Arroyo et al., MouBeAT: A new and open toolbox for guided analysis of behavioral tests in mice, Frontiers in Behavioral Neuroscience, 12, 201, (2018), doi: 10.3389/fnbeh.2018.00201. [Google Scholar]
  29. Smart video tracking software. [Google Scholar]
  30. VideoTrack. Rodent behavior tracking software. [Google Scholar]
  31. ANY-maze. Behavioural tracking software. [Google Scholar]
  32. R. da Silva Aragao et al., Automatic system for analysis of locomotor activity in rodents—a reproducibility study, Journal of Neuroscience Methods, 195, 2, 216–221, (2011) doi: 10.1016/j.jneumeth.2010.12.016. [CrossRef] [PubMed] [Google Scholar]
  33. Rodriguez, H. Zhang, J. Klaminder, T. Brodin, P. L. Andersson, and M. Andersson, ToxTrac: A fast and robust software for tracking organisms, Methods in Ecology and Evolution, 9, no. 3, pp. 460–464, (2018) doi: 10.1111/2041-210X.12874. [Google Scholar]
  34. G. Stockman and L. G. Shapiro, Computer vision, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, (2001) [Google Scholar]
  35. Z. Zivkovic, Improved adaptive gaussian mixture model for background subtraction, 2, 28–31, (2004) doi: 10.1109/ICPR.2004.1333992. [Google Scholar]
  36. Z. Zivkovic and F. van der Heijden, Efficient adaptive density estimation per image pixel for the task of background subtraction, Pattern Recognition Letters, 27, 7, 773–780, (2006) doi: [Google Scholar]
  37. S. Suzuki and K. be, Topological structural analysis of digitized binary images by border following, Computer Vision, Graphics, and Image Processing, 30, 1, 32–46, (1985) doi: [CrossRef] [Google Scholar]
  38. K. Saho, Kalman filter for moving object tracking: Performance analysis and filter design, in Kalman filters (2018) [Google Scholar]
  39. H. R. Maei, K. Zaslavsky, C. M. Teixeira, and P. W. Frankland, What is the most sensitive measure of water maze probe test performance? Frontiers in integrative neuroscience, 3, 4–4, (2009) doi: 10.3389/neuro.07.004.2009 [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.