Open Access
Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 6 | |
Section | CO2 Sequestration and Deep Geothermal Energy | |
DOI | https://doi.org/10.1051/e3sconf/202020502007 | |
Published online | 18 November 2020 |
- J. M. Belbute and A. M. Pereira, “ARFIMA Reference Forecasts for Worldwide CO2 Emissions and the Need for Large and Frontloaded Decarbonization Policies,” Lisboa, (2019). [Google Scholar]
- P. Gatenholm and D. Klemm, “Bacterial Nanocellulose as a Reneable Material for Biomedical Applications,” MRS Bull., vol. 35, pp. 208–213, (2010), doi: 10.1080/15440478.2018.1439426. [Google Scholar]
- O. A. Hisseine, W. Wilson, L. Sorelli, B. Tolnai, and A. Tagnit-Hamou, “Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems,” Constr. Build. Mater., vol. 206, pp. 84–96, (2019), doi: 10.1016/j.conbuildmat.2019.02.042. [Google Scholar]
- X. Sun, Q. Wu, S. Lee, Y. Qing, and Y. Wu, “Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement,” Sci. Rep., vol. 6, pp. 1–9, (2016), doi: 10.1038/srep31654. [CrossRef] [PubMed] [Google Scholar]
- J. C. Barría, A. Vazquez, P. Cerrutti, and D. Manzanal, “Effect of Bacterial Nanocellulose on class G cement,” (2020). [Google Scholar]
- P. Cerrutti, P. Roldán, R. M. García, M. A. Galvagno, A. Vázquez, and M. L. Foresti, “Production of bacterial nanocellulose from wine industry residues: Importance of fermentation time on pellicle characteristics,” J. Appl. Polym. Sci., vol. 133, no. 14, (2016), doi: 10.1002/app.43109. [Google Scholar]
- C. G. Hoyos, R. Zuluaga, P. Gañán, T. M. Pique, and A. Vazquez, “Cellulose nanofibrils extracted from fique fibers as bio-based cement additive,” J. Clean. Prod., vol. 235, pp. 1540–1548, (2019), doi: 10.1016/j.jclepro.2019.06.292. [Google Scholar]
- API Specification 10A, Specification for Cements and Materials for Well Cementing. 2010. [Google Scholar]
- V. Barlet-Gouedard, G. Rimmelé, B. Goffé, and O. Porcherie, “Well Technologies for CO 2 Geological Storage : CO 2 -Resistant Cement,” SPE Int., vol. 62, no. 3, pp. 325–334, (2007), doi: 10.2516/ogst. [Google Scholar]
- B. G. Kutchko, B. R. Strazisar, G. V. Lowry, D. a. Dzombak, and N. Thaulow, “Rate of CO2 Attack on Hydrated Class H Well Cement under Geologic Sequestration Conditions,” Environ. Sci. \& Technol., vol. 42, no. 16, pp. 6237–6242, (2008), doi: 10.1021/es800049r. [Google Scholar]
- S. H. Yin, Y. F. Yang, T. S. Zhang, G. F. Guo, and F. Yu, “Effect of carbonic acid water on the degradation of Portland cement paste: Corrosion process and kinetics,” Constr. Build. Mater., vol. 91, pp. 39–46, (2015), doi: 10.1016/j.conbuildmat.2015.05.046. [Google Scholar]
- Y. J. Jeong, K. S. Youm, and T. S. Yun, “Effect of nano-silica and curing conditions on the reaction rate of class G well cement exposed to geological CO2-sequestration conditions,” Cem. Concr. Res., vol. 109, no. September 2017, pp. 208–216, (2018), doi: 10.1016/j.cemconres.2018.05.001. [Google Scholar]
- J. C. Barria, D. Manzanal, C. M. Martín, T. M. Pique, and J. M. Pereira, “Cement-rock interface subjected to scCO2,” in 14th International Congress Rock Mechanics and Geotechnical Engineering, 2019, pp. 3196–3203. [Google Scholar]
- J. C. Barría, D. Manzanal, J.-M. Pereira, and S. Ghabezloo, “Study on poromechanical changes of nanocellulose cement composite subjected to supercritical CO2,” (2020). [Google Scholar]
- J. C. Barría, D. Manzanal, and J. M. Pereira, “CO2 Geological Storage: Performance of Cement-Rock Interface,” in Proceedings of the XVI Pan-American Conference on Soil Mechanics and Geotechnical Engineering (XVI PCSMGE), 2019, pp. 2873–2881, doi: 10.3233/STAL190359. [Google Scholar]
- M. Panchuk, L. Shlapak, A. Panchuk, M. Szkodo, and W. Kiełczy, “Perspectives of use of nanocellulose in oil and gas industry,” J. Hydrocarb. Power Eng., vol. 3, no. 2, pp. 79–84, (2016). [Google Scholar]
- S. Ghabezloo, J. Sulem, and J. Saint-Marc, “Evaluation of a permeability-porosity relationship in a low-permeability creeping material using a single transient test,” Int. J. Rock Mech. Min. Sci., vol. 46, no. 4, pp. 761– 768, (2009), doi: 10.1016/j.ijrmms.2008.10.003. [CrossRef] [Google Scholar]
- A. Fabbri et al., “Effect of carbonation on the hydro-mechanical properties of Portland cements,” Cem. Concr. Res., vol. 39, no. 12, pp. 1156–1163, (2009), doi: 10.1016/j.cemconres.2009.07.028. [Google Scholar]
- D. Manzanal, V. Vallin, and J. M. Pereira, “A chemo-poromechanical model for well/caprock interface in presence of CO2,” Poromechanics V - Proc. 5th Biot Conf. Poromechanics, pp. 1470– 1477, (2013), doi: 10.1061/9780784412992.175. [Google Scholar]
- B. G. Kutchko, B. R. Strazisar, D. A. Dzombak, G. V. Lowry, and N. Thauiow, “Degradation of well cement by CO2 under geologic sequestration conditions,” Environ. Sci. Technol., vol. 41, no. 13, pp. 4787–4792, (2007), doi: 10.1021/es062828c. [Google Scholar]
- T. Fu, R. J. Moon, P. Zavattieri, J. Youngblood, and W. J. Weiss, Cellulose nanomaterials as additives for cementitious materials, vol. C. Elsevier Ltd, 2017. [Google Scholar]
- A. Fabbri et al., “Effect of carbonation on the hydro-mechanical properties of Portland cements,” Cem. Concr. Res., vol. 39, no. 12, pp. 1156–1163, (2009), doi: 10.1016/j.cemconres.2009.07.028. [Google Scholar]
- H. E. Mason, W. L. Du Frane, S. D. C. Walsh, Z. Dai, S. Charnvanichborikarn, and S. A. Carroll, “Chemical and Mechanical Properties of Wellbore Cement Altered by CO 2 ‑ Rich Brine Using a Multianalytical Approach,” Environ. Sci. Technol., vol. 47, pp. 1745–1752, (2013), doi: dx.doi.org/10.1021/es3039906. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.