Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 02008
Number of page(s) 7
Section CO2 Sequestration and Deep Geothermal Energy
Published online 18 November 2020
  1. M. Todesco, G. Chiodini, G. Macedonio, Monitoring and modelling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy); an interdisciplinary approach to the study of diffuse degassing, J. Volcanol. Geotherm. Res. 125, 57–79 (2003). [CrossRef] [Google Scholar]
  2. M. Todesco, J. Rutqvist, G. Chiodini, K. Pruess, C.M. Oldenburg, Modeling of recent volcanic episodes at Phlegrean Fields (Italy): geochemical variations and ground deformation, Geothermics 33, 531–547 (2004). [Google Scholar]
  3. M.G. Chiodini, M. Todesco, S. Caliro, C. Del Gaudio, G. Macedonio, M. Russo, Magma degassing as a trigger of bradyseismic events; the case of Phlegrean Fields (Italy), Geophys. Res. Lett. 30, 1434 (2003). [Google Scholar]
  4. M.G. Chiodini, S. Caliro, P. De Martino, R. Avino, F. Gherardi, Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations, Geology 40, 943–946 (2012). [Google Scholar]
  5. A.P. Rinaldi, M. Todesco, M. Bonafede, Hydrothermal instability and ground displacement at the Campi Flegrei caldera, Phy. of the Earth and Planetary Interiors 178, 155–161 (2010). [CrossRef] [Google Scholar]
  6. A. Troiano, M.G. Di Giuseppe, Z. Petrillo, C. Troise, G. De Natale, Ground deformation at calderas driven by fluid injection: modelling unrest episodes at Campi Flegrei (Italy), Geophys. J. Int. 187, 833–847 (2011). [Google Scholar]
  7. A. Afanasyev, A. Costa, G. Chiodini, Investigation of hydrothermal activity at Campi Flegrei caldera using 3D numerical simulations: extension to high temperature processes, J. Volcanol. Geotherm. Res. 299, 68-77 (2015). [CrossRef] [Google Scholar]
  8. A. Coco, G. Currenti, J. Gottsmann, G. Russo, C. Del Negro, Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of a restless caldera, Jour. of Math. Ind. 6(6), 1-20 (2016). [Google Scholar]
  9. T. Vanorio, W. Kanitpanyacharoen, Rock physics of fibrous rocks akin to Roman concrete explains uplifts at Campi Flegrei Caldera, Science 349 (6248), 617-621 (2015). [Google Scholar]
  10. L. De Siena, G. Chiodini, G., Vilardo, E. Del Pezzo, M. Castellano, S. Colombelli, N. Tisato, G. Ventura, Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983-84, Scientific Reports 7 (8099), 1-13 (2017). [Google Scholar]
  11. W. G. Akande, L. De Siena, Q. Gan, Three-dimensional kernel-based coda attenuation imaging of caldera structures controlling the 1982-84 Campi Flegrei unrest, J. Volcanol. Geotherm. Res. 381, 273-283 (2019). [CrossRef] [Google Scholar]
  12. J. Taron, D. Elsworth, K.-B. Min, Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media, Int. J. Rock Mech. Min. Sci. 46, 842-854 (2009). [CrossRef] [Google Scholar]
  13. AGIP, “Modello geotermico del sistema flegreo”. Servizi Centrali per l’Esplorazione, SERG-MESG; San Donato, (23 pp. (in Italian)), Agip Oil Company (1987). [Google Scholar]
  14. P.P.G. Bruno, S. Maraio, G. Festa, The shallow structure of Solfatara Volcano, Italy, revealed by dense, wide-aperture seismic profiling, Scientific Reports 7, 17386 (2017). [CrossRef] [PubMed] [Google Scholar]
  15. S. Vitale, R. Isaia, Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): Insight into volcano-tectonic processes, International Journal of Earth Sciences 103, 801–819 (2014). [CrossRef] [Google Scholar]
  16. F. Cappa, J. Rutqvist, Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2, International Journal of Greenhouse Gas Control 5, 336–346 (2011). [CrossRef] [Google Scholar]
  17. Q. Gan, D. Elsworth, Analysis of fluid injection-induced fault reactivation and seismic slip in geothermal reservoirs, J. Geophys. Research: Solid Earth 119, 3340–3353 (2014). [CrossRef] [Google Scholar]
  18. G. Mandl, “Faulting in brittle rock: An Introduction to the Mechanics of Tectonic Faults”, Springer-Verlag Berlin Heidelberg, 444p (2000). [Google Scholar]
  19. S.E. Ingebritsen, C.E. Manning, Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism, Geofluids 10, 193– 205 (2010). [Google Scholar]
  20. B.B.T. Wassing, J.D. van Wees, P.A. Fokker, Coupled continuum modeling of fracture reactivation and induced seismicity during enhanced geothermal operations, Geothermics 52, 153–164 (2014). [Google Scholar]
  21. F. Bianco, E. Del Pezzo, G. Saccorotti, G. Ventura, The role of hydrothermal fluids in triggering the July–August 2000 seismic swarm at Campi Flegrei, Italy: Evidence from seismological and mesostructural data, J. Volcanol. Geotherm. Res. 133, 229-246 (2004). [CrossRef] [Google Scholar]
  22. A.P. Villaseñor, “Physical and Mechanical Characterization of Altered Volcanic Rocks for the Stability of Volcanic Edifices”, PhD Thesis at Università degli Studi di Milano-Bicocca (2010). [Google Scholar]
  23. J. Rutqvist, C.F. Tsang, Coupled hydromechanical effects of CO2 injection, Developments in Water Science 52, 649-679 (2005). [CrossRef] [Google Scholar]
  24. M.J. Heap, P. Baud, P.G. Meredith, S. Vinciguerra, T. Reuschlé, The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling, Solid Earth 5, 25–44 (2014). [CrossRef] [Google Scholar]
  25. S. Aversa, A. Evangelista, Thermal Expansion of Neapolitan Yellow Tuff, Rock Mech. Rock Engng. 26(4), 281-306 (1993). [CrossRef] [Google Scholar]
  26. J.H. Dieterich, Modeling of Rock Friction 1. Experimental Results and Constitutive Equations, J. Geophys. Res. 84, 2161-2168 (1979). [Google Scholar]
  27. K. Terzaghi, “Die Berechnung der Durchlässigkeitziffer des Tonesaus dem Verlauf der hydrodynamischen Spannungserscheinungen”, Akad. Der Wissenschaften in Wien, Sitzungsberichte, Mathematisch-naturwissenschafttliche Klasse. Part IIa, 142 (3/4), 125–138 (1923). [Google Scholar]
  28. J.C. Jaeger, N.G.W. Cook, “Fundamental of Rock Mechanics”, Chapman & Hall, London (1979). [Google Scholar]
  29. S. Baisch, R. Vörös, E. Rothert, H. Stang, R. Jung, R. Schellschmidt, A numerical model for fluid injection induced seismicity at Soultz-sous-Forêts, Int. J. Rock Mech. Min. Sci. 47, 405 (2010). [CrossRef] [Google Scholar]
  30. W.L. Ellsworth, Injection-induced earthquakes, Science 341 (2013). [Google Scholar]
  31. Battaglia, C. Troise, F. Obrizzo, F. Pingue, G. De Natale, Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy), Geophy. Research Letters 33 (1), 1-4 (2006). [CrossRef] [Google Scholar]
  32. T. Volti, S. Crampin, D.A. Nieuwland, A four-year study of shear-wave splitting in Iceland: 2. Temporal changes before earthquakes and volcanic eruptions, New Insights into Structural Interpretation and Modelling, Geol. Soc. Lond., Spec. Publ. 12, 135-149 (2003). [CrossRef] [Google Scholar]
  33. X. Zhou, T.J. Burbey, E. Westman, The effect of caprock permeability on shear stress path at the aquifer–caprock interface during fluid injection, Intl. Rock Mech. and Min. Sci. 7, 1-10 (2015). [Google Scholar]
  34. H. Kanamori, E.E. Brodsky, The Physics of Earthquakes, American Institute of Physics (Physics Today), 30-40 (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.