Open Access
Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 4 | |
Section | CO2 Sequestration and Deep Geothermal Energy | |
DOI | https://doi.org/10.1051/e3sconf/202020502010 | |
Published online | 18 November 2020 |
- Shukla, R., et al., “A review of studies on CO2 sequestration and caprock integrity”, Fuel, 89(10), pp. 2651-2664, 2010. https://doi.org/10.1016/j.fuel.2010.05.012 [CrossRef] [Google Scholar]
- Gor, G.Y., H.A. Stone, and J.H. Prévost, “Fracture Propagation Driven by Fluid Outflow from a Low-Permeability Aquifer”, Transport in Porous Media, 100(1), pp. 69-82, 2013. https://doi.org/10.1007/s11242-013-0205-3 [Google Scholar]
- Kharaka, Y.K., et al., “Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana”, Environmental Earth Sciences, 60(2), p. 273-284, 2010. https://doi.org/10.1007/s12665-009-0401-1 [Google Scholar]
- Niemi, A., J. Bear, and J. Bensabat, “Geological Storage of CO2 in Deep Saline Formations”, Vol. 29, Springer, 2017. https://doi.org/10.1007/978-94-024-0996-3 [Google Scholar]
- Kim, Y., et al., “Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network”, Applied Energy, 185(Part 1), pp. 916-928, 2017. https://doi.org/10.1016/j.apenergy.2016.10.012 [Google Scholar]
- Jean-Baptiste, P. and R. Ducroux, “Energy policy and climate change”, Energy Policy, 31(2), pp. 155-166, 2003. https://doi.org/10.1016/S0301-4215(02)00020-4 [Google Scholar]
- Cuéllar-Franca, R.M. and A. Azapagic, “Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts”, Journal of CO2 Utilization, 9, pp. 82-102, 2015. https://doi.org/10.1016/j.jcou.2014.12.001 [Google Scholar]
- De Silva, G.P.D., P.G. Ranjith, and M.S.A. Perera, “Geochemical aspects of CO2 sequestration in deep saline aquifers: A review”, Fuel, 155, p. 128-143, 2015. https://doi.org/10.1016/j.fuel.2015.03.045 [CrossRef] [Google Scholar]
- Makhnenko, R.Y., et al., “Hydromechanical Aspects of CO2 Breakthrough into Clay-rich Caprock”, Energy Procedia, 114, pp. 3219-3228, 2017. https://doi.org/10.1016/j.egypro.2017.03.1453 [Google Scholar]
- Jayasekara, D.W., et al., “Effect of salinity on supercritical CO2 permeability of caprock in deep saline aquifers: An experimental study”, Energy,191, pp. 116486, 2019. https://doi.org/10.1016/j.energy.2019.116486 [CrossRef] [Google Scholar]
- Metwally, Y.M. and C.H. Sondergeld, “Measuring low permeabilities of gas-sands and shales using a pressure transmission technique”,International Journal of Rock Mechanics and Mining Sciences, 48(7), pp. 1135-1144, 2011. https://doi.org/10.1016/j.ijrmms.2011.08.004 [CrossRef] [Google Scholar]
- Scherer, G.W., “Stress from crystallization of salt”, Cement and Concrete Research, 34(9), pp. 1613-1624, 2004. https://doi.org/10.1016/j.cemconres.2003.12.034 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.