Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 03002
Number of page(s) 6
Section Hydraulic Fracturing and Unconventional Hydrocarbons
Published online 18 November 2020
  1. Alevizos, S., Poulet, T., and Veveakis, E. [2014] Thermo‐poro‐mechanics of chemically active creeping faults. 1: Theory and steady state considerations. J. Geophys. Res. Solid Earth, 119 (6), 4558– 4582. [Google Scholar]
  2. Anderson, E. M. [1905]. The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3):387–402. [CrossRef] [Google Scholar]
  3. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F. [1997] Efficient management of parallelism in object oriented numerical software libraries, in: Arge, E., Bruaset, A.M., Langtangen, H.P. (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press. pp. 163–202. [CrossRef] [Google Scholar]
  4. Brantut, N., Sulem, J., and Schubnel, A. [2011] Effect of dehydration reactions on earthquake nucleation: Stable sliding, slow transients, and unstable slip. J. Geophys. Res., 116(B5). [Google Scholar]
  5. Dos Santos, M. D. L. and Oliveira, F. R. [2014] Fault Reactivation as Mechanism of Early Water Production in Unconsolidated Sandstones Reservoirs. Society of Petroleum Engineers. [Google Scholar]
  6. Engelder, T. and Fischer, M. P. [1994] Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh in overpressured parts of sedimentary basins. Geology, 22(10):949–952. [Google Scholar]
  7. Gaston, D., Newman, C., Hansen, G., and Lebrun-Grandié, D. [2009] MOOSE: A parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des., 239(10):1768– 1778. [CrossRef] [Google Scholar]
  8. Hillis, R. [2001] Coupled changes in pore pressure and stress in oil fields and sedimentary basins. Petroleum Geoscience, 7, 419-425. [CrossRef] [Google Scholar]
  9. Jaeger, J. C. [2007] Fundamentals of Rock Mechanics. Wiley-Blackwell. [Google Scholar]
  10. Lesueur, M., Casadiego, M. C., Veveakis, M., and Poulet, T. [2017] Modelling fluid-microstructure interaction on elasto-visco-plastic digital rocks. Geomechanics for Energy and the Environment, 12:1–13. [CrossRef] [Google Scholar]
  11. Lesueur, M., Poulet, T., and Veveakis, M. [2020] Three-scale multiphysics finite element framework (FE3) modelling fault reactivation. Comp. Meth. App. Mech. Eng., 365, 112988 [CrossRef] [Google Scholar]
  12. Nacht, P. K., De Oliveira, M., Roehl, D. M., and Costa, A. M. [2010] Investigation of geological fault reactivation and opening. Mecánica Computacional, XXIX:8687–8697. [Google Scholar]
  13. Papanicolopulos, S., Veveakis, E. [2011] Sliding and rolling dissipation in Cosserat plasticity. Granular Matter, 13, 197–204 [Google Scholar]
  14. Poulet, T., Veveakis, M., Herwegh, M., Buckingham, T., and Regenauer‐Lieb, K. [2014a] Modeling episodic fluid‐release events in the ductile carbonates of the Glarus thrust. Geophys. Res. Lett., 41, 7121– 7128. [Google Scholar]
  15. Poulet, T., Veveakis, M., Regenauer‐Lieb, K., and Yuen, D. A. [2014b] Thermo‐poro‐mechanics of chemically active creeping faults: 3. The role of serpentinite in episodic tremor and slip sequences, and transition to chaos. J. Geophys. Res. Solid Earth, 119 (6), 4606– 4625. [Google Scholar]
  16. Poulet, T., Paesold, M. and Veveakis, M. [2017] Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems. Rock Mech Rock Eng, 50(3), 733-749. [Google Scholar]
  17. Regenauer-Lieb, K. and Yuen, D. A. [1998] Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere. Geophys. Res. Lett., 25(14):2737–2740. [Google Scholar]
  18. Scholz, C. H. [2002] The Mechanics of Earthquakes and Faulting. Cambridge University Press. [CrossRef] [Google Scholar]
  19. Segall, P. [1989] Earthquakes triggered by fluid extraction. Geology, 17(10), 942-946 [Google Scholar]
  20. Sulem, J. and Famin, V. [2009] Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects. J. Geophys. Res., 114(B3). [Google Scholar]
  21. Teufel, L. W., Rhett, D. W., and Farrell, H. E. [1991] Effect of Reservoir Depletion And Pore Pressure Drawdown On In Situ Stress And Deformation In the Ekofisk Field, North Sea. In The 32nd U.S. Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association. [Google Scholar]
  22. Veveakis, E., Alevizos, S. and Vardoulakis, I. [2010] Chemical reaction capping of thermal instabilities during shear of frictional faults. Journal of the Mechanics and Physics of Solids, 58(9), 1175-1194. [Google Scholar]
  23. Veveakis, E., Poulet, T., and Alevizos, S. [2014] Thermo‐poro‐mechanics of chemically active creeping faults: 2. Transient considerations. J. Geophys. Res. Solid Earth, 119 (6), 4583-4605. [Google Scholar]
  24. Veveakis, E., Alevizos, S. and Poulet T. [2017] Episodic tremor and slip (ETS) as a chaotic multiphysics spring. Phys. Earth. Plan. Inter., 264, 20-34 [CrossRef] [Google Scholar]
  25. Wiprut, D. J. and Zoback, M. D. [2000] Fault reactivation and fluid flow along a preciously dormant normal fault in the northern North Sea. Geology, 28(7), 595-598. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.