Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 04007
Number of page(s) 5
Section Thermo-Hydro-Mechanical Properties of Geomaterials
DOI https://doi.org/10.1051/e3sconf/202020504007
Published online 18 November 2020
  1. L. F. DeBano, “Water repellent soils: a state-of-the-art,” United States Dep. Agric. Gen. Tech. Rep. PSW-GTR-46, pp. 1–21, 1981. [Google Scholar]
  2. S. H. Doerr, R. A. Shakesby, and R. P. D. Walsh, “Soil water repellency: Its causes, characteristics and hydro-geomorphological significance,” Earth Sci. Rev., vol. 51, no. 1–4, pp. 33–65, 2000. [Google Scholar]
  3. L. F. Debano and J. S. Krammes, “Water repellent soils and their relation to wildfire temperatures,” Int. Assoc. Sci. Hydrol. Bull., vol. 11, no. 2, pp. 14–19, 1966. [CrossRef] [Google Scholar]
  4. Z. Wang, Q. J. Wu, L. Wu, C. J. Ritsema, L. W. Dekker, and J. Feyen, “Effects of soil water repellency on infiltration rate and flow instability.pdf,” vol. 232, pp. 265–276, 2000. [Google Scholar]
  5. D. F. Scott and D. B. Van Wyk, “The effects of wildfire on soil wettability and hydrological behavior of afforested chatchement,” vol. 118, pp. 239–256, 1990. [Google Scholar]
  6. S. H. Cannon, R. M. Kirkham, and M. Parise, “Wildfire-related debris-flow initiation processes,” Geomorphology, vol. 39, pp. 171– 188, 2001. [CrossRef] [Google Scholar]
  7. P. Jordan and S. A. Covert, “Debris flows and floods following the 2003 wildfires in Southern British Columbia,” Environ. Eng. Geosci., vol. 15, no. 4, pp. 217–234, 2009. [CrossRef] [Google Scholar]
  8. J. Letey, J. Osborn, and R. Pelishek, “Measurement of liquid-solid contact angles in soil and sand,” Soil Sci., vol. 93, no. 3, pp. 149–153, 1962. [Google Scholar]
  9. J. Bachmann, R. Horton, R. Van Der Ploeg, and S. Woche, “Modified sessile drop method for assessing initial soil--water contact angle of sandy soil,” Soil Sci. Soc. Am. J., vol. 64, no. 2, pp. 564–567, 2000. [Google Scholar]
  10. W. A. Zisman, “Contact angle, wettability, and adhesion,” Adv. Chem. Ser., vol. 43, p. 1, 1964. [Google Scholar]
  11. M. Zohuriaan and F. Shokrolahi, “Thermal studies on natural and modified gums,” Polym. Test., vol. 23, no. 5, pp. 575–579, 2004. [Google Scholar]
  12. S. Rosalam and R. England, “Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp.,” Enzyme Microb. Technol., vol. 39, no. 2, pp. 197–207, 2006. [Google Scholar]
  13. I. Chang, J. Im, A. K. Prasidhi, and G. C. Cho, “Effects of xanthan gum biopolymer on soil strengthening,” Constr. Build. Mater., vol. 74, no. x, pp. 65–72, 2015. [Google Scholar]
  14. M. Z. Karim, S. E. Tucker-Kulesza, and M. M. Derby, “Synthesizing hydrophobic sand and comparison of shear strength properties with hydrophilic sand,” pp. 75–83, 2018. [Google Scholar]
  15. C. Lee, H.-J. Yang, T. S. Yun, Y. Choi, and S. Yang, “Water-entry pressure and friction angle in an artificially synthesized water-repellent silty soil,” Vadose Zo. J., vol. 14, no. 4, p. 0, 2015. [Google Scholar]
  16. J. Schleuss, D. Smith, and B. Boxall, “Tracking a path of destruction from Montecito’s mountains to the ocean.,” Los Angeles Times, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.