Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 04006
Number of page(s) 5
Section Thermo-Hydro-Mechanical Properties of Geomaterials
DOI https://doi.org/10.1051/e3sconf/202020504006
Published online 18 November 2020
  1. Z.H. Rizvi, K. Sembdner, A. Suman, et al. Experimental and Numerical investigation of Thermo-Mechanical properties for Nano-Geo composite. Int J Thermophys 40, 54 (2019). [Google Scholar]
  2. J. Nordbeck, S. Bauer, C. Beyer Experimental characterisation of a lab-scale cement-based thermal energy storage system. Appl Energy 256 :113937, (2019) [Google Scholar]
  3. S. Ahmad, Z.H. Rizvi, M.A. Khan, J. Ahmad, F. Wuttke, Experimental study of thermal performance of the backfill material around underground power cable under steady and cyclic thermal loading Materials Today: Proceedings 17(1), 85-95. (2019). [CrossRef] [Google Scholar]
  4. S.K. Haigh, Thermal conductivity of sands Geotechnique 62(7): 617–625 (2012). [Google Scholar]
  5. F.G.S. Corasaniti, Int Comm in Heat and Mass Transfer 47:1–6 (2013). [Google Scholar]
  6. S. X. Chen, Thermal conductivity of sands Heat Mass Transf. 44(10):1241–1246 (2008). [Google Scholar]
  7. O. Johansen, Thermal conductivity of soils, University of Trondheim, (Ph.D.Thesis) (1975). [Google Scholar]
  8. A. El Moumen, T. Kanit, A. Imad, H. El Minor, Computational thermal conductivity in porous materials using homogenization techniques: numerical and statistical approaches Comput Mater Sci 97:148–158 (2015). [Google Scholar]
  9. M. Kiani-Oshtorjani, P. Jalali, Thermal discrete element method for transient heat conduction in granular packing under compressive forces Int J of Heat and Mass Transfer 145:118753, (2019). [CrossRef] [Google Scholar]
  10. Z.H. Rizvi, D. Shrestha, A.S. Sattari et al. Numerical modelling of effective thermal conductivity for modified geomaterial using lattice element method Heat Mass Transf 54:483 (2018). [Google Scholar]
  11. S.J. Russell, P. Norvig, Artificial intelligence: a modern approach, Pearson Education (2016). [Google Scholar]
  12. I. Goodfellow, Y. Bengio, A. Courville, Deep learning. MIT Press (2017). [Google Scholar]
  13. G.H. Go, S.R. Lee, Y.S. Kim, Int Comm Heat and Mass Transf 74:82–90 (2016). [CrossRef] [Google Scholar]
  14. T. Zhang, C. Wang, S. Liu, et al. Cold Regions Science and Technology, 169, 102907, (2020). [Google Scholar]
  15. Z.H. Rizvi, H.H. Zaidi, S.J. Akhtar, et al. Heat Mass Transfer (2020). 10.1007/s00231-020-02833-w. [Google Scholar]
  16. V. R. Tarnawski, T. Momose, and W. H. Leong Assessing the impact of quartz content on the prediction of soil thermal conductivity Géotechnique 59(4), 331-338 (2009). [Google Scholar]
  17. V. R. Tarnawski, F. Tsuchiya, P. Coppa, G. Bovesecchi, Int J Thermophys 40, 14 (2019). [Google Scholar]
  18. V.R. Tarnawski, T. Momose, M.L. McCombie, W.H. Leong, Int J Thermophys 36: 119–156 (2015). [Google Scholar]
  19. N. Zhang, X.B. Yu, A. Pradhan, A.J. Puppala, ASCE J Mater Civ Eng 27(12):04015059 (2015). [CrossRef] [Google Scholar]
  20. H. Wen, J. Bi, D. Guo, European Journal of Soil Science (2020) 10.1111/ejss.12934. [Google Scholar]
  21. D. Shrestha, Z.H. Rizvi, F. Wuttke, (2019), Effective thermal conductivity of unsaturated granular geocomposite using Lattice Element Method” , Heat and Mass Transfer 55:6 1671–1683. [CrossRef] [Google Scholar]
  22. Z. H Rizvi, S. M. B. Hussain, H. Haider F. Wuttke Effective thermal conductivity of sands estimated by Group Method of Data Handling (GMDH), Materials Today: Proceedings, 26 (2) 2103-2107.). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.