Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 04015
Number of page(s) 7
Section Thermo-Hydro-Mechanical Properties of Geomaterials
DOI https://doi.org/10.1051/e3sconf/202020504015
Published online 18 November 2020
  1. D. Martínez Calonge. Experimental investigation of the thermo-mechanical behaviour and thermal properties of London clay. PhD. Imperial College London (2017) [Google Scholar]
  2. V. Mantikos. Development of novel apparatus for establishing swelling and water retention characteristics of bentonite. PhD. Imperial College London (2018) [Google Scholar]
  3. H. Gray. Progress report on research on the consolidation of fine-grained soils. 1st Int. Conf. on Soil Mechanics and Foundation Engineering. Massachusetts, USA: p. 138-141 (1936) [Google Scholar]
  4. F. Finn. The effect of temperature on the consolidation characteristics of remolded clay. Symposium on Consolidation Testing of Soils. New Jersey, USA: p. 65-71 (1952) [CrossRef] [Google Scholar]
  5. R.E. Paaswell. Temperature effects on clay soil consolidation. Journal of the Soil Mechanics and Foundations Division. 93(3): p. 9-22 (1967) [Google Scholar]
  6. R. Plum, M. Esrig. Effects of temperature on some engineering properties of clay soils. Int. Conf. on Effects of Temperature and Heat on Engineering Behavior of Soils. Washington, D.C., USA: p. 231-242 (1969) [Google Scholar]
  7. L. Eriksson. Temperature effects on consolidation properties of sulphide clays. Int. Conf. on Soil Mechanics and Foundation Engineering. Rio de Janeiro, Brazil: p. 2087-2090 (1989) [Google Scholar]
  8. M. Tidfors, G. Sällfors. Temperature effect on preconsolidation pressure. Geotechnical Testing Journal. 12(1): p. 93-97 (1989) [CrossRef] [Google Scholar]
  9. L. Moritz. Geotechnical Properties of Clay at Elevated Temperatures. Swedish Geotechnical Institute. Report no. 47 (1995). [Google Scholar]
  10. I. Towhata, P. Kuntiwattanaku, I. Seko, K. Ohishi. Volume change of clays induced by heating as observed in consolidation tests. Soils and Foundations. 33(4): p. 170-183 (1993) [CrossRef] [Google Scholar]
  11. E. Romero. Characterisation and thermo-hydro-mechanical behaviour of unsaturated Boom Clay: An experimental study. PhD. Universitat Politècnica de Barcelona (1999) [Google Scholar]
  12. M.V. Villar, A. Lloret. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Applied Clay Science. 26(1-4): p. 337-350 (2004) [Google Scholar]
  13. H.M. Abuel-Naga, D.T. Bergado, S. Soralump, P. Rujivipat. Thermal consolidation of soft Bangkok clay. Lowland Technology International. 7(1): p. 13-21 (2005) [Google Scholar]
  14. B. François, S. Salager, M. El Youssoufi, D. Ubals Picanyol, L. Laloui, C. Saix. Compression tests on a sandy silt at different suction and temperature levels. Computer Applications in Geotechnical Engineering: p. 1-10 (2007) [Google Scholar]
  15. W.M. Ye, Y.W. Zhang, B. Chen, Z.J. Zheng, Y.G. Chen, Y.J. Cui. Investigation on compression behaviour of highly compacted GMZ01 bentonite with suction and temperature control. Nuclear Engineering and Design. 252(1): p. 11-18 (2012) [CrossRef] [Google Scholar]
  16. E.E. Mon, S. Hamamoto, K. Kawamoto, T. Komatsu, P. Moldrup. Temperature effects on geotechnical properties of kaolin clay: simultaneous measurements of consolidation characteristics, shear stiffness, and permeability using a modified oedometer. GSTF International Journal of Geological Sciences (JGS). 1(1): p. 1-10 (2013) [Google Scholar]
  17. A. Vega, J.S. McCartney. Cyclic heating effects on thermal volume change of silt. Environmental Geotechnics. 2(5): p. 257-268 (2015) [CrossRef] [Google Scholar]
  18. J. Sittidumrong, A. Jotisankasa, K. Chantawarangul. Effect of thermal cycles on volumetric behavior of Bangkok sand. Geomechanics for Energy and the Environment. 20: p. 100127 (2019) [CrossRef] [Google Scholar]
  19. J.M. McGinley. The effects of temperature on the consolidation process of saturated fine-grained soils. PhD. University of Colorado (1983) [Google Scholar]
  20. A. Di Donna, L. Laloui. Response of soil subjected to thermal cyclic loading: experimental and constitutive study. Engineering Geology. 190: p. 65-76 (2015) [Google Scholar]
  21. V. Favero, A. Ferrari, L. Laloui. Thermo-mechanical volume change behaviour of Opalinus Clay. International Journal of Rock Mechanics and Mining Sciences. 90: p. 15-25 (2016) [CrossRef] [Google Scholar]
  22. C.W.W. Ng, Q. Mu, C. Zhou. Effects of boundary conditions on cyclic thermal strains of clay and sand. Géotechnique Letters. 7(1): p. 73-78 (2017) [CrossRef] [Google Scholar]
  23. D. Toll. A data acquisition and control system for geotechnical testing. Computing Developments in Civil and Structural Engineering. p. 237-242 (1999) [Google Scholar]
  24. B. François, L. Laloui. An oedometer for studying combined effects of temperature and suction on soils. Geotechnical Testing Journal. 33(2): p. 112-122 (2010) [Google Scholar]
  25. B.P. Skinner. Thermal expansion. Handbook of Physical Constants. p. 75-91 (1966) [Google Scholar]
  26. H.A. McKinstry. Thermal expansion of clay minerals. American Mineralogist: Journal of Earth and Planetary Materials. 50(1-2): p. 212-222 (1965) [Google Scholar]
  27. G. Kaye, T. Laby. Physical and chemical constants. Harlow Longman. p. 273 (1959) [Google Scholar]
  28. W. Flügge. Handbook of engineering mechanics. McGraw-Hill New York (1962) [Google Scholar]
  29. O.W. Eshbach, B.D. Tapley. Eshbach’s handbook of engineering fundamentals. John Wiley & Sons (1990) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.