Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 04014
Number of page(s) 6
Section Thermo-Hydro-Mechanical Properties of Geomaterials
DOI https://doi.org/10.1051/e3sconf/202020504014
Published online 18 November 2020
  1. L. Kong, M. Ostadhassan, C. Li, N. Tamimi, J., “Pore characterization of 3D-printed gypsum rocks: a comprehensive approach”, Mat. Sci., 53, 5063–5078 (2018). [CrossRef] [Google Scholar]
  2. C. Jiang, G.F. Zhao, J.B. Zhu, Y.X. Zhao, L. Shen, “Investigation of dynamic crack coalescence using a gypsum-like 3D printing material”, Rock Mech. Rock Eng., 49, 3983– 3998 (2016). [Google Scholar]
  3. J. Glasschroeder, E. Prager, M.F. Zaeh, “Powder-bed-based 3D-printing of function integrated parts”, Rapid Prototyp. J., 21, 207– 215 (2015). [Google Scholar]
  4. L. Huang, R.R. Stewart, N. Dyaur, J. Baez-Franceschi, “3D-printed rock models: Elastic properties and the effects of penny-shaped inclusions with fluid substitution”, Geophys., 81, 669–677 (2016). [CrossRef] [Google Scholar]
  5. S. Fereshtenejad J.J. Song, “Fundamental study on applicability of powder-based 3D printer for physical modeling in rock mechanics”, Rock Mech. Rock Eng., 49 (2016). [Google Scholar]
  6. D. Vogler, S.D.C. Walsh, E. Dombrovski, M.A. Perras, “A comparison of tensile failure in 3D-printed and natural sandstone”, Eng. Geol., 226, 221-235 (2017). [Google Scholar]
  7. K.J. Hodder, J.A. Nychka, R.J. Chalaturnyk, “Process limitations of 3D printing model rock”, Prog. Addit. Manuf., 3, 173–182 (2018). [CrossRef] [Google Scholar]
  8. J.S. Gomez, R.J. Chalaturnyk, G. Zambrano-Narvaez, “Experimental Investigation of the Mechanical Behavior and Permeability of 3D Printed Sandstone Analogues Under Triaxial Conditions”, Transp. Porous Media, 129, 541-557 (2018). [Google Scholar]
  9. S. Osinga, G. Zambrano-Narvaez, R. Chalaturnyk, “Study of geomechanical properties of 3D printed sandstone analogue”, Proceed. Amer. Rock Mech. Assoc., ARMA 15-547 (2015). [Google Scholar]
  10. B. Primkulov, J. Chalaturnyk, R. Chalaturnyk, G.Z. Narvaez, “3D printed sandstone strength: curing of furfuryl alcohol resin-based sandstones”, 3D Print. Addit. Manuf., 4, 149– 155 (2017). [Google Scholar]
  11. P. Churcher, P. French, J. Shaw, “Rock properties of berea sandstone, baker dolomite, and indiana limestone”, Soc. Pet. Eng., 21044: 431–440 (1991). [Google Scholar]
  12. S. Gregorski, “High green density metal parts by vibrational compaction of dry powder in the three dimensional printing process”, PhD Thesis, MIT, US (1996). [Google Scholar]
  13. J. Ayer. F. Soppet, “Vibratory compaction: ii, compaction of angular shapes”, J. Am. Ceram. Soc., 49, 207–210 (1966). [Google Scholar]
  14. Y. Bai, G. Wagner, C. Williams, “Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals”, J. Manuf. Sci. Eng., 139, 081019 (2017). [Google Scholar]
  15. A. Mostafaei, P. Rodriguez De Vecchis, P. Nettleship, M. Chmielus, “Effect of powder size distribution on densification and microstructural evolution of binder-jet 3d printed alloy 625”, Mater. Des. 162, 375–383 (2019). [Google Scholar]
  16. N. Ardila, G. Zambrano-Narvaez, R.J. Chalaturnyk, “Wettability measurements on 3d printed sandstone analogues and its implications for fluid transport phenomena”, Transp. Porous Media, 129, 521-539 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.