Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05006
Number of page(s) 7
Section Issues Related to Energy Piles
DOI https://doi.org/10.1051/e3sconf/202020505006
Published online 18 November 2020
  1. Merton Council. Sustainable design and construction evidence base: Climate change in the planning system. Merton Council. (2010) [Google Scholar]
  2. P. Eskilson. Thermal analysis of heat extraction boreholes [PhD thesis]. Sweden: University of Lund; (1987). [Google Scholar]
  3. M. Li, A.C.K. Lai. New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory. Energy. 38(1):255-63. (2012) [CrossRef] [Google Scholar]
  4. F. Loveridge, W. Powrie. Temperature response functions (G-functions) for single pile heat exchangers. Energy. 57:554-64. (2013) [CrossRef] [Google Scholar]
  5. M.A. Pagola, R.L. Jensen, S. Madsen, S.E. Poulsen. Method to obtain g-functions for multiple precast quadratic pile heat exchangers. Aalborg University. Report No.: DCE Technical Reports, No. 243 Contract No.: DCE Technical Reports, No. 243. (2018) [Google Scholar]
  6. D.M. Potts, L. Zdravkovic. Finite element analysis in geotechnical engineering: theory. London: Thomas Telford Publishing; (1999). [CrossRef] [Google Scholar]
  7. D.M. Potts, L. Zdravkovic. Finite element analysis in geotechnical engineering: application. London: Thomas Telford Publishing; (2001). [CrossRef] [Google Scholar]
  8. F. Loveridge, W. Powrie, D. Nicholson. Comparison of two different models for pile thermal response test interpretation. Acta Geotech. 9(3):367-84. (2014) [Google Scholar]
  9. K.A. Gawecka, D.M. Potts, D.M.G. Taborda, W. Cui, L. Zdravkovic, Effects of transient phenomena on the behaviour of thermo-active piles. 1st International Conference on Energy Geotechnics, ICEGT 2016. (2016) [Google Scholar]
  10. R.Y.W. Liu, D.M.G. Taborda, K.A. Gawecka, W. Cui, D.M. Potts, Computational study on the effects of boundary conditions on the modelled thermally induced axial stresses in thermo-active piles. XVII European Conference on Soil Mechanics and Geotechnical Engineering; Reykjavik, Iceland. (2019) [Google Scholar]
  11. K.A. Gawecka, D.M. Potts, W. Cui, D.M.G. Taborda, L. Zdravković. A coupled thermo-hydro-mechanical finite element formulation of one-dimensional beam elements for three-dimensional analysis. Comput Geotech. 104:29-41. (2018) [Google Scholar]
  12. K.A. Gawecka, D.M.G. Taborda, D.M. Potts, E. Sailer, W. Cui, L. Zdravkovic. Finite element modelling of heat transfer in ground source energy systems with heat exchanger pipes. Int J Geomech (in press). (2019) [Google Scholar]
  13. F.C. Schroeder, D.M. Potts, T.I. Addenbrooke. The influence of pile group loading on existing tunnels. Geotechnique. 54(6):351-62. (2004) [CrossRef] [Google Scholar]
  14. D.M.G. Taborda, D.M. Potts, L. Zdravković. On the assessment of energy dissipated through hysteresis in finite element analysis. Comput Geotech. 71:180-94. (2016) [Google Scholar]
  15. K.A. Gawecka, D.M.G. Taborda, D.M. Potts, W. Cui, L. Zdravković, M.S. Haji Kasri. Numerical modelling of thermo-active piles in London Clay. Proc Inst Civ Eng Geotech Eng. 170(3):201-19. (2017) [CrossRef] [Google Scholar]
  16. W. Cui, K.A. Gawecka, D.M. Potts, D.M.G. Taborda, L. Zdravković. Numerical analysis of coupled thermo-hydraulic problems in geotechnical engineering. Geomech Energy Environ. 6:22-34. (2016) [CrossRef] [Google Scholar]
  17. W. Cui, K.A. Gawecka, D.M. Potts, D.M.G. Taborda, L. Zdravković. A Petrov-Galerkin finite element method for 2D transient and steady state highly advective flows in porous media. Comput Geotech. 100:158-73. (2018) [Google Scholar]
  18. H.-w. Lu, X. Jin, G. Jiang, W.-q. Liu. Numerical Analysis of the Thermal Performance of Energy Pile with U-Tube. Energy Procedia. 105:4731-7. (2017) [Google Scholar]
  19. Jalaluddin, A. Miyara, K. Tsubaki, S. Inoue, K. Yoshida. Experimental study of several types of ground heat exchanger using a steel pile foundation. Renewable Energy. 36(2):764-71. (2011) [Google Scholar]
  20. F. Cecinato, F.A. Loveridge. Influences on the thermal efficiency of energy piles. Energy. 82:1021-33. (2015) [CrossRef] [Google Scholar]
  21. J. Gao, X. Zhang, J. Liu, K. Li, J. Yang. Numerical and experimental assessment of thermal performance of vertical energy piles: An application. Appl Energy. 85(10):901-10. (2008) [Google Scholar]
  22. K.A. Gawecka. Numerical analysis of geothermal piles [PhD Thesis]. London: Imperial College London; (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.