Open Access
Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 05013 | |
Number of page(s) | 6 | |
Section | Issues Related to Energy Piles | |
DOI | https://doi.org/10.1051/e3sconf/202020505013 | |
Published online | 18 November 2020 |
- R.G. Campanella, J. K. Mitchell. Influence of temperature variations on soil behaviour. J. Soil Mech. Found. Div., 94(3), 709–734, (1968). [Google Scholar]
- G. Baldi, T. Hueckel, A. Peano, R. Pellegrini. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials. 1, Commission of the European Communities, (1991). [Google Scholar]
- T. Hueckel, R. Pellegrini, C. Del Olmo. Modelling of thermal failure of saturated clays. Int. J. Num. Anal. Met., 22(7), 549-574, (1998). [CrossRef] [Google Scholar]
- A. Burghignoli, A., Desideri, S. Miliziano. A laboratory study on the thermomechanical behaviour of clayey soils. Can. Geotech. J., 37(4), 764-780, (2000). [Google Scholar]
- H.M. Abuel-Naga, D.T. Bergado, A. Bouazza, G. Ramana. Volume change behaviour of saturated clays under drained heating conditions: experimental and constitutive modelling. Can. Geotech. J., 44, 942-956, (2007). [Google Scholar]
- A. Vega, J.S. McCartney. Cyclic heating effects on thermal volume change of silt. Environ. Geotech., 2(5), 257-268 (2014). [CrossRef] [Google Scholar]
- Di Donna, L. Laloui, L. Response of soil subjected to thermal cyclic loading: experimental and constitutive study. Eng. Geol., 190, 65–76 (2015). [Google Scholar]
- C.W.W. Ng, C. Shi, A. Gunawan, L. Laloui. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay. Geotech. Lett., 4(4), 310–316 (2014). [Google Scholar]
- D. Wu, H.L. Liu, G.Q. Kong, C.W.W. Ng, X.H. Cheng. Displacement response of an energy pile in saturated clay. Proc. Institution of Civil Engineers-Geotechnical Engineering, 171(4), 285-294, (2018). [Google Scholar]
- D. Mašín. A hypoplastic constitutive model for clays. Int. J. Num. Anal. Met., 29(4), 311-336, (2005). [CrossRef] [Google Scholar]
- D. Mašín, Modelling of Soil Behaviour with Hypoplasticity: Another Approach to Soil Constitutive Modelling. Springer, (2019). [Google Scholar]
- D. Mašín, N. Khalili. A thermo‐mechanical model for variably saturated soils based on hypoplasticity. Int. J. Num. Anal. Met., 36(12), 1461-1485, (2012). [CrossRef] [Google Scholar]
- Q.J. Ma, C.W.W. Ng, D. Mašín, C. Zhou. An approach for modelling volume change of fine-grained soil subjected to thermal cycles. Can. Geotech. J., 54(6), 896–901, (2017). [CrossRef] [Google Scholar]
- A. Di Donna, A.F.R. Loria, L. Laloui. Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads. Comput. Geotech., 72, 126–142, (2016). [Google Scholar]
- S.L. Abdelaziz, T.Y Ozudogru. Selection of the design temperature change for energy piles. Appl. Therm. Eng. 107,1036–1045, (2016). [Google Scholar]
- F.A. Loveridge, W. Powrie. The Average Temperature of Energy Piles. Geo-Chicago, 166-175, (2016). [Google Scholar]
- A. Niemunis, I. Herle. Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohes. Frict. Mat., 2(4), 279-299, (1997). [CrossRef] [Google Scholar]
- G. Viggiani, J.H. Atkinson. Stiffness of fine-grained soil at very small strains. Géotechnique, 45(2), 249-265, (1995). [CrossRef] [Google Scholar]
- M.E. Suryatriyastuti, S. Burlon, H. Mroueh. On the understanding of cyclic interaction mechanisms in an energy pile group. Int. J. Num. Anal. Met., 40(1), 3-24, (2015). [CrossRef] [Google Scholar]
- A. Vieira, J.R. Maranha. Thermoplastic analysis of a thermoactive pile in a normally consolidated clay. Int. J. Geomech., 17(1), 04016030, (2017). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.