Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05014
Number of page(s) 7
Section Issues Related to Energy Piles
DOI https://doi.org/10.1051/e3sconf/202020505014
Published online 18 November 2020
  1. A. Di Donna, L. Laloui. Numerical analysis of the geotechnical behaviour of energy piles. Int. J. Numer. Anal. Meth. Geomech., 39 (8), 28 (2015). [CrossRef] [Google Scholar]
  2. P. Bourne-Webb, B. Amatya, K. Soga, T. Amis, C. Davidson, P. Payne. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Geotechnique, 59(3), 11 (2009). [CrossRef] [Google Scholar]
  3. L. Laloui, M. Nuth, L. Vulliet. Experimental and numerical investigations of the behaviour of a heat exchanger pile. International journal for numerical and analytical methods in geomechanics, 30(8), 18 (2006). [Google Scholar]
  4. KD. Murphy, JS. McCartney. Seasonal response of energy foundations during building operation Geotec.Geol. Eng. 33(2), 13 (2015). [CrossRef] [Google Scholar]
  5. PJ. Bourne Webb, TM. Bodas Freitas, R.M. Freitas Assuncao. Soil–pile thermal interactions in energy foundations. Geotechnique, 66(2), 4 (2016). [Google Scholar]
  6. TM. Bodas Freitas, F. Cruz Silva, PJ. Bourne-Webb. The response of energy foundations under thermo-mechanical loading .19th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, 4 (2013). [Google Scholar]
  7. G. Russo, MRS. Maiorano, G. Marone. Analysis of thermo-mechanical behaviour of energy piles. Geotec. Eng. Journal of the SEAGS & AGSSEA Journal, 50 (3), 7 (2019). [Google Scholar]
  8. G. Marone, L. Di Girolamo, G. Russo. Studio parametrico del comportamento di un palo singolo sottoposto a carichi termo-meccanici IAGIG 2019, 4, (2019). [Google Scholar]
  9. RMS. Maiorano, G. Marone, G. Russo, L. Di Girolamo. Experimental behaviour and numerical analysis of energy piles. XVII ECSMGE, 8 (2019). [Google Scholar]
  10. CL. Wang., H. Liu, G. Kong, CWW. Ng. Different types of energy piles with heating–cooling cycles. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 170, 11 (2017). [CrossRef] [Google Scholar]
  11. N. Yavari, AM. Tang, JM. Pereira, G Hassen. Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotechnica, 9(3), 13 (2014). [Google Scholar]
  12. CA. Kramer, P. Basu. Performance of a model geothermal pile in sand. 8th International conference on physical modelling in geotechnics, Perth., 7 (2014). [Google Scholar]
  13. Design Builder Location Templates: https://designbuilder.co.uk/helpv6.0/#Location_Templates.htm Design Builder Guide : https://designbuilder.co.uk/helpv6.0/#GetStarted.htm%3FTocPath%3DGet%2520Started%7C_____0J [Google Scholar]
  14. G. Russo. Experimental investigations and analysis on different pile load testing procedures. Acta Geotechnica, 8 (1), 14 (2013). [Google Scholar]
  15. G. Russo, G. Marone. Experimental comparison on different pile load testing methods. Experimental comparison on different pile load testing methods. DFI-EFFC Int. Conf. on Deep Found. and Ground Improvement: Urbanization and Infrastructure Development-Future Challenges, Rome, 11 (2018). [Google Scholar]
  16. JS. McCartney, JE. Rosenberg. Impact of Heat Exchange on Side Shear in Thermo-Active Foundations Geo-frontiers 2011: Advances in Geotechincal engeneering, ASCE, 11 (2011). [Google Scholar]
  17. CG. Olgun, TY. Ozudogru, and CF. Arson. Thermo-mechanical radial expansion of heat exchanger piles and possible effects on contact pressures at pile–soil interface. Geolett, 4(3),9 (2014). [Google Scholar]
  18. M. Faizal, A.Bouazza, C.Haberfield, JS. McCartney. Axial and Radial Thermal Responses of a Field-Scale Energy Pile under Monotonic and Cyclic Temperature Changes. Journal of Geotec. and Geoenv. Eng. 144(10), 14 (2018). [CrossRef] [Google Scholar]
  19. M. Faizal, A. Bouazza, JS. McCartney, C. Haberfield. Axial and radial thermal responses of energy pile under six storey residential building. Canadian Geotec. Journal, 56(7), 15 (2019). [CrossRef] [Google Scholar]
  20. N. Sultan, P. Delage, YJ. Cui. Temperature effects on the volume change behaviour of Boom clay. Eng Geol., 64, 11 (2002). [Google Scholar]
  21. HM. Abuel-Naga, DT. Bergado, A. Bouazza, G. Ramana. Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modelling. Can Geotech J., 44, 14 (2007). [Google Scholar]
  22. A. Di Donna, L. Laloui. Response of soil subjected to thermal cyclic loading: Experimental and constitutive study Eng Geol., 190, 12 (2015). [Google Scholar]
  23. CWW. Ng, C. Shi, A. Gunawan, L. Laloui. Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay. Geotech letters, 4 (4), 6 (2014) . [Google Scholar]
  24. J. Sittidumrong, A. Jotisankasa, K. Chantawarangul. Effect of thermal cycles on volumetric behaviour of Bangkok sand. Geomechanics for Energy and the Environment, 20, 12 (2019). [CrossRef] [Google Scholar]
  25. CWW. Ng, S.H. Wang, C. Zhou. Volume change behaviour of saturated sand under thermal cycles. Géotech Lett., 6(2), 8 (2016). [Google Scholar]
  26. H. Liu, H. Liu, Y. Xiao, JS. McCartney. Influence of Temperature on the Volume Change Behavior of Saturated Sand. ASTM Geotech Test J. 2018, 41(4), 11 (2018). [Google Scholar]
  27. J. Goode III, JS. McCartney. Centrifuge Modeling of End-Restraint Effects in Energy Foundations. Journal of Geotech Geoenviron Eng, 141 (8), 13 (2015). [Google Scholar]
  28. HL. Liu, CL. Wang, GQ. Kong, A. Bouazza. A simplified design method for energy piles. Acta Geotechnica, 14, 10 (2019). [Google Scholar]
  29. ME. Suryatriyastuti, H. Mroueh, S. Burlon. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading. Energy Geostructures: Innovation in Underground Engineering, 17 (2013). [Google Scholar]
  30. G. Colombo. Il congelamento artificiale del terreno negli scavi della metropolitana di Napoli: valutazioni teoriche e risultati sperimentali RIG, XLIV (4), 21 (2010). [Google Scholar]
  31. D. Ludovico. Modello idrogeologico del sito di interesse nazionale – sin – “Napoli orientale” Thésis, 52 (2007). [Google Scholar]
  32. PJ. Bourne Webb, TM. Bodas Freitas, RM. Freitas Assuncao. A review of pile-soil interactions in isolated, thermally-activated piles. Computers and Geotechnics, 108, 13 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.