Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05012
Number of page(s) 6
Section Issues Related to Energy Piles
DOI https://doi.org/10.1051/e3sconf/202020505012
Published online 18 November 2020
  1. Abuel-Naga, H. M., Bergado, D. T., & Bouazza, A. (2007). Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Engineering Geology, 89(1-2), 144-154. [Google Scholar]
  2. Abuel-Naga, H. M., Bergado, D. T., & Lim, B. F. (2007). Effect of temperature on shear strength and yielding behavior of soft Bangkok clay. Soils and Foundations, 47(3), 423-436. [CrossRef] [Google Scholar]
  3. Abuel-Naga, H. M., Bergado, D. T., Ramana, G. V., Grino, L., Rujivipat, P., & Thet, Y. (2006). Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature. Journal of geotechnical and geoenvironmental engineering, 132(7), 902-910. [CrossRef] [Google Scholar]
  4. Abuel-Naga, H., Bergado, D. T., Bouazza, A. and Ramana, G. (2007). Volume change behaviour of saturated clays under drained heating conditions: experimental and constitutive modelling. Canadian Geotechnical Journal, 44, 942-956. [CrossRef] [Google Scholar]
  5. Baldi, G., Hueckel, T., & Pellegrini, R. (1988). Thermal volume changes of the mineral–water system in low-porosity clay soils. Canadian geotechnical journal, 25(4), 807-825. [CrossRef] [Google Scholar]
  6. Burghignoli, A., Desideri, A., & Miliziano, S. (2000). A laboratory study on the thermomechanical behaviour of clayey soils. Canadian Geotechnical Journal, 37(4), 764-780. [CrossRef] [Google Scholar]
  7. Campanella, R. G., & Mitchell, J. K. (1968). Influence of temperature variations on soil behavior. Journal of Soil Mechanics & Foundations Div. [Google Scholar]
  8. Coccia, C. J. R., & McCartney, J. S. (2012). A thermo-hydro-mechanical true triaxial cell for evaluation of the impact of anisotropy on thermally induced volume changes in soils. Geotechnical Testing Journal, 35(2), 227-237. [Google Scholar]
  9. Di Donna, A. 2014. Thermo-mechanical aspects of energy piles. Ph.D. thesis, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland. [Google Scholar]
  10. Di Donna, A., and Laloui, L. 2013. Advancements in the geotechnical design of energy piles. In Proceedings of the International Workshop on Geomechanics and Energy – The Ground as Energy Source and Storage, Lausanne, Switzerland. Google Scholar [Google Scholar]
  11. Elzeiny, R., Suleiman, M. T., Qamar, M. A. A., Xiao, S., & Al-Khawaja, M. Axial Pull-Out Response of a Small-Scale Concrete Pile Subjected to Cyclic Thermal Loading in Sand. In IFCEE 2018 (pp. 706-714). [Google Scholar]
  12. Ghaaowd, I., McCartney, J., Huang, X., Saboya, F., & Tibana, S. (2018). Issues with centrifuge modelling of energy piles in soft clays. In Physical Modelling in Geotechnics, Volume 2 (pp. 1365-1370). CRC Press. [CrossRef] [Google Scholar]
  13. Hueckel, T., & Baldi, G. (1990). Thermoplasticity of saturated clays: experimental constitutive study. Journal of geotechnical engineering, 116(12), 1778-1796. [CrossRef] [Google Scholar]
  14. Laloui, L. (2001). Thermo-mechanical behaviour of soils. Environmental geomechanics. EPFL Press, Lausanne, 809-843. [Google Scholar]
  15. Murphy, K. D., & McCartney, J. S. (2014). Thermal borehole shear device. Geotechnical Testing Journal, 37(6), 1040-1055. [CrossRef] [Google Scholar]
  16. Towhata, I., Kuntiwattanakul, P., & Kobayashi, H. (1993). A preliminary study on heating of clays to examine possible effects of temperature on soil-mechanical properties. Soils and Foundations, 33(4), 184-190. [CrossRef] [Google Scholar]
  17. Uchaipichat, A., & Khalili, N. (2009). Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt. Géotechnique, 59(4), 339-353. [CrossRef] [Google Scholar]
  18. Xiao, S., Suleiman, M. T., & McCartney, J. S. (2014). Shear behavior of silty soil and soil-structure interface under temperature effects. In Geo-Congress 2014: Geo-characterization and Modeling for Sustainability (pp. 4105-4114). [Google Scholar]
  19. Yavari, N., Tang, A. M., Pereira, J. M., & Hassen, G. (2016). Effect of temperature on the shear strength of soils and the soil–structure interface. Canadian Geotechnical Journal, 53(7), 1186-1194. [CrossRef] [Google Scholar]
  20. Yazdani, S., Helwany, S., & Olgun, G. (2019). Experimental Evaluation of Shear Strength of Kaolin Clay under Cyclic and Noncyclic Thermal Loading. Geotechnical Testing Journal, 42(6), 1518-1548. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.