Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 06008
Number of page(s) 6
Section Minisymposium: Advances in Energy Geostructures Research (organized by Fleur Loveridge and Guillermo Narsilio)
Published online 18 November 2020
  1. L. Laloui, A. Di Donna, Energy Geostructures: Innovation in Underground Engineering. ISTE Ltd and John Wiley Sons Inc. (2013) [Google Scholar]
  2. K. Soga, Y. Rui, Energy geostructures, in: S.J. Rees (Ed.), Advances in Ground-Source Heat Pump Systems, Woodhead Publishing, 185-221 (2016) [CrossRef] [Google Scholar]
  3. A. Di Donna, M. Barla, The role of ground conditions and properties on the efficiency of energy tunnels, Environ. Geotech. 3(4), 214-224 (2016) [Google Scholar]
  4. M. Baralis, M. Barla, W. Bogusz, A. Di Donna, G. Ryzynski, M. Zerun, Geothermal potential of the NE extension Warsaw metro tunnels, Environ. Geotech., 1-13 (2018) [Google Scholar]
  5. M. Barla, M. Baralis, A. Insana, F. Zacco, S. Aiassa, F. Antolini, F. Azzarone, P. Marchetti, Feasibility study for the thermal activation of Turin Metro Line 2, in: Proceedings of the WTC 2019 ITA-AITES World Tunnel Congress, CRC Press/Balkema, 231-240 (2019) [Google Scholar]
  6. J. Epting, M. Baralis, R. Künze, M.H. Mueller, A. Insana, M. Barla, P. Huggenberger, Geothermal potential of tunnel infrastructures e development of tools at the city-scale of Basel, Switzerland, Geothermics 83 (2020) [Google Scholar]
  7. D.P. Nicholson, Q. Chen, M. de Silva, A. Winter, R. Winterling, The design of thermal tunnel energy segments for Crossrail, UK, Eng. Sustain., 167, ES3, 118-134 (2014) [CrossRef] [Google Scholar]
  8. M. Barla, A. Di Donna, Energy tunnels: concept and design aspects, Underg. Sp., 3, 4, 268-276 (2018) [Google Scholar]
  9. T. Mimouni, Thermomechanical characterization of energy geostructures with emphasis on energy piles, PhD thesis, EPFL, Lausanne, Switzerland (2014) [Google Scholar]
  10. M. Barla, A., Di Donna, Conci energetici per il rivestimento delle gallerie, Strade & Autostrade, 5 (2016) [Google Scholar]
  11. M. Barla, A. Di Donna, A. Insana, A novel real-scale experimental prototype of energy tunnel, Tunn. Undergr. Sp. Tech., 87, 1-14 (2019) [Google Scholar]
  12. A. Insana, M. Barla, Experimental and numerical investigations on the energy performance of a thermo-active tunnel, Ren. Energy 152, 781-792 2020) [Google Scholar]
  13. T. Mimouni, L. Laloui, Full-scale in situ testing of energy piles. In Energy Geostructures: Innovation in Underground Engineering (L. Laloui, A. Di Donna (eds)). ISTE, London, UK and Wiley, Hoboken, NJ, USA, 23–43 (2013) [CrossRef] [Google Scholar]
  14. H.J.G. Diersch, DHI Wasy Software - Feflow 6.1 - Finite Element Subsurface Flow & Transport Simulation System: Reference Manual (2009) [Google Scholar]
  15. Itasca, FLAC ver.7.0 user’s manual (2016) [Google Scholar]
  16. M. Barla, G. Barla, Turin subsoil characterization by combining site investigations and numerical modelling, Geomechanics and Tunnelling, 5, No. 3, 214-231 (2012) [CrossRef] [Google Scholar]
  17. M. Panet, Le calcul des tunnels par la méthode convergence-confinement, Paris, Presses de l’Ecole Nationale des Ponts et Chaussées (1995) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.