Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 06009
Number of page(s) 6
Section Minisymposium: Advances in Energy Geostructures Research (organized by Fleur Loveridge and Guillermo Narsilio)
DOI https://doi.org/10.1051/e3sconf/202020506009
Published online 18 November 2020
  1. Laloui L, Rotta Loria AF. Analysis and Design of Energy Geostructures. Elsevier Academic Press; 2019. [Google Scholar]
  2. Knellwolf C, Peron H, Laloui L. Geotechnical analysis of heat exchanger piles. Journal of Geotechnical and Geoenvironmental Engineering 2011;137:890–902. [Google Scholar]
  3. Suryatriyastuti M, Mroueh H, Burlon S. A load transfer approach for studying the cyclic behavior of thermo-active piles. Computers and Geotechnics 2014;55:378–91. [Google Scholar]
  4. Pasten C, Santamarina JC. Thermally induced long-term displacement of thermoactive piles. Journal of Geotechnical and Geoenvironmental Engineering 2014;140:06014003. [Google Scholar]
  5. Chen D, McCartney JS. Parameters for Load Transfer Analysis of Energy Piles in Uniform Nonplastic Soils. International Journal of Geomechanics 2016:04016159. [Google Scholar]
  6. Sutman M, Olgun CG, Laloui L. Cyclic load–transfer approach for the analysis of energy piles. Journal of Geotechnical and Geoenvironmental Engineering 2019;145:04018101. [Google Scholar]
  7. Iodice C, Di Laora R, Mandolini A. Analytical Solutions for Ultimate Limit State Design of Thermal Piles. Journal of Geotechnical and Geoenvironmental Engineering 2020;146:04020016. [Google Scholar]
  8. Rotta Loria AF, Laloui L. The equivalent pier method for energy pile groups. Géotechnique 2017;67:691– 702. [CrossRef] [Google Scholar]
  9. Rotta Loria AF, Vadrot A, Laloui L. Analysis of the vertical displacement of energy pile groups. Geomechanics for Energy and the Environment 2018;16:1–14. [Google Scholar]
  10. Rotta Loria AF, Vadrot A, Laloui L. Effect of non-linear soil deformation on the interaction among energy piles. Computers and Geotechnics 2017;86:9– 20. [Google Scholar]
  11. Ravera E, Sutman M, Laloui L. Analysis of the interaction factor method for energy pile groups with slab. Computers and Geotechnics 2019:103294. https://doi.org/10.1016/j.compgeo.2019.103294. [Google Scholar]
  12. Ravera E, Sutman M, Laloui L. Load Transfer Method for Energy Piles in a Group with Pile-Soil-Slab-Pile Interaction. Journal of Geotechnical and Geoenvironmental Engineering 2020;146:04020042. [Google Scholar]
  13. Zannin J, Rotta Loria AF, Llabjani Q, Laloui L. Extension of Winkler’s solution to non-isothermal conditions for capturing the behaviour of plane geostructures subjected to thermal and mechanical actions. Computers and Geotechnics 2020:In print. [Google Scholar]
  14. Winkler E. Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rücksicht auf ihre Anwendung in der Technik für polytechnische Schulen, Bauakademien, Ingenieue, Maschinenbauer, Architecten, etc. Dominicus; 1867. [Google Scholar]
  15. Rotta Loria AF, Bocco M, Garbellini C, Muttoni A, Laloui L. The role of thermal loads in the performance-based design of energy piles. Geomechanics for Energy and the Environment 2020;21:100153. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.