Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 07001
Number of page(s) 6
Section Minisymposium: Geothermal Use of Built Urban Infrastructures and the Shallow Subsurface for Energy Storage and Production (organized by Frank Wuttke, Thomas Nagel, Sebastian Bauer and David Smeulders)
DOI https://doi.org/10.1051/e3sconf/202020507001
Published online 18 November 2020
  1. Paris Agreement, FCCC/CP/2015/L.9/Rev.1. United Nations Framework Convention on Climate Change (UNFCCC) Secretariat (2015). Retrieved 08. August 2020. [Google Scholar]
  2. F. Wuttke, N. Wagner, M. Khan, A. Thess, & H. Scherzberg. Thermohaline energy geo-storage – Evaluation of fluid–fluid and fluid–salt rock interaction, Geotechnique Letters, 4:2, 132–138. (2014) [CrossRef] [Google Scholar]
  3. C.J. Santamarina, G. Cho, G. Energy geotechnology. KSCE J Civ Eng 15, 607–610. https://doi.org/10.1007/s12205-011-0101-8. (2011) [CrossRef] [Google Scholar]
  4. R.J. Fragaszy, J.C. Santamarina, A. Amekudzi, et al. Sustainable development and energy geotechnology – Potential roles for geotechnical engineering. KSCE J Civ Eng 15, 611–621. https://doi.org/10.1007/s12205-011-0102-7. (2011) [CrossRef] [Google Scholar]
  5. J.S. McCartney, M. Sánchez, & I. Tomac. Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management, Computers and Geotechnics, Volume 75, 244–256, https://doi.org/10.1016/j.compgeo.2016.01.002. (2016) [Google Scholar]
  6. Patent DK179739B1 – System for Storage of Energy and/or Water. [Google Scholar]
  7. P. Norlyk, K. Sørensen., L.V. Andersen, K.K. Sørensen & H.H. Stutz.. Holistic simulation of a subsurface inflatable geotechnical energy storage system using fluid cavity elements, Computers and Geotechnics, Volume 127, 103722, https://doi.org/10.1016/j.compgeo.2020.103722. (2020) [Google Scholar]
  8. P.A. von Wolffersdorff. Hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials, 1(3), 251–271. (1996) [CrossRef] [Google Scholar]
  9. A. Niemunis, & I. Herle. Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials, 2(1997), 279–299. (1997) [CrossRef] [Google Scholar]
  10. H. Stutz, D. Mašín, A.S. Sattari & F. Wuttke. A general approach to model interfaces using existing soil constitutive models application to hypoplasticity, Computers and Geotechnics, vol. 87, pp.115–127. https://doi.org/10.1016/j.compgeo.2017.02.010. (2017) [Google Scholar]
  11. R.E. Goodman, R.L. Taylor, & T.L. Brekke. A model for the mechanics of jointed rock. J. of the Soil Mech. and Found. Div., ASCE, 94(3), 637-660. (1968) [Google Scholar]
  12. H. Stutz, T. Benz, & F. Wuttke. Extended zero-thickness interface element for accurate soil-pile interaction modelling. In: M A. Hicks, R B. J. Brinkgreve & A Rohe (eds), Numerical Methods in Geotechnical Engineering: Proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering. vol. 1, CRC Press/Taylor, London, UK, pp. 283-289, https://doi.org/10.1201/b17017-52. (2014) [Google Scholar]
  13. Krabbenhøft, S., Clausen, J., & Damkilde, L. The Bearing Capacity of Circular Footings in Sand: Comparison between Model Tests and Numerical Simulations Based on a Nonlinear Mohr Failure Envelope. Advances in Civil Engineering, 2012. https://doi.org/10.1155/2012/947276 (2012) [Google Scholar]
  14. D. Kolymbas. A generalized hypoelastic constitutive law. In: Proc. XI Int. Conf. Soil Mechanics and Foundation Engineering 5. (1985) [Google Scholar]
  15. D. Mašín. Modelling of Soil Behaviour with Hypoplasticity – Another Approach to Soil Constitutive Modelling. Springer International Publishing, 192 p., ISBN: 978-3-030-03975-2. (2019) [Google Scholar]
  16. H.H. Stutz & F. Wuttke. Hypoplastic modeling of soil–structure interfaces in offshore applications. J. Zhejiang Univ.-Sci. A; 19(8):624–637. doi:10.1631/jzus.A1700469. (2018) [CrossRef] [Google Scholar]
  17. C. Ng, J. Shi, D. Mašín, H. Sun, & G. Lei. Influence of sand density and retaining wall stiffness on three– dimensional responses of tunnel to basement excavation. Can. Geotech. J. 2015;52(11):1811– 1829. doi:10.1139/cgj-2014-0150. (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.