Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 07002
Number of page(s) 6
Section Minisymposium: Geothermal Use of Built Urban Infrastructures and the Shallow Subsurface for Energy Storage and Production (organized by Frank Wuttke, Thomas Nagel, Sebastian Bauer and David Smeulders)
DOI https://doi.org/10.1051/e3sconf/202020507002
Published online 18 November 2020
  1. G. Ferguson, A.D. Woodbury, Subsurface heat flow in an urban environment, J. Geophys. Res.: Solid Earth 109 (2004) [CrossRef] [Google Scholar]
  2. A. Bidarmaghz, R. Choudhary, K. Soga, H. Kessler, R.L. Terrington, S. Thorpe, Influence of geology and hydrogeology on heat rejection from residential basements in urban areas, Tunn. Undergr. Space Technol. 92 (2019) [CrossRef] [Google Scholar]
  3. J.A. Rivera, P. Blum, P. Bayer, Increased ground temperatures in urban areas: Estimation of the technical geothermal potential, Renewable Energy 103, pp 388-400 (2017) [Google Scholar]
  4. Y. Zhang, K. Soga, R. Choudhary, Shallow geothermal energy application with GSHPs at city scale : study on the City of Westminster, Géotech. Lett. 4:2, pp 125-131 (2014) [CrossRef] [Google Scholar]
  5. A. Bidarmaghz, R. Choudhary, K. Soga, H. Kessler, R.L. Terrington, S. Thorpe, Large-scale urban underground hydro-thermal modelling – A case study of the Royal Borough of Kensington and Chelsea, London, Science of the Total Environment 700 (2020) [CrossRef] [Google Scholar]
  6. COMSOL Multiphysics® v. 5.5. www.comsol.com. COMSOL AB, Stockholm, Sweden [Google Scholar]
  7. https://www.bgs.ac.uk/products/digitalmaps/digmagb_art.html [Google Scholar]
  8. B. Williams, Cardiff Bay barrage: Management of groundwater issues, Proc. I. Civ. Eng. Water Management 161:WM6, pp 313-321 (2008) [CrossRef] [Google Scholar]
  9. Ordnance Survey Open Zoomstack. Contains OS data © Crown copyright and database right (2019) [Google Scholar]
  10. Verein Deutscher Ingenieure (VDI), Thermische Nutzung des Untergrunds: Grundlagen, Genehmigungen, Umweltaspekte (Thermal use of the underground: Fundamentals, approvals, environmental aspects), VDI 4640. Beuth Verlag GmbH, Berlin (2010) [Google Scholar]
  11. BGS unpublished data, © British Geological Survey, UKRI [Google Scholar]
  12. P.R.N. Hobbs, J.R Hallam, A Forster, D.C. Entwisle, L.D. Jones, A.C. Cripps, K.J. Northmore, S.J. Self, J.L Meakin, Engineering geology of British rocks and soils Mudstones of the Mercia Mudstone Group, BGS Research Report RR/01/02, (2020) [Google Scholar]
  13. I.N. Hamdhan, B.G. Clarke, Determination of Thermal Conductivity of Coarse and Fine Sand Soils, Proc. World Geothermal Congress, (2010) [Google Scholar]
  14. D.P. Boon, G.J. Farr, C. Abesser, A.M. Patton, D.R. James, D.I. Schofield, D.G. Tucker, Groundwater heat pump feasibility in shallow urban aquifers: Experience from Cardiff, UK, Science of the Total Environment 697 (2019) [Google Scholar]
  15. B.R. Thomas, Possible effects of rising groundwater levels on a gasworks site: A case study from Cardiff Bay, UK, Quarterly Journal of Engineering Geology and Hydrogeology, 30, pp 79-93 (1997) [CrossRef] [Google Scholar]
  16. ENTEC (UK) LTD. Cardiff Bay Barrage Groundwater Control System, Design Modelling Studies. Entec, Shrewsbury, 1997, Report 12206RR290 i3 [Google Scholar]
  17. P.J. Armitage, R.H. Worden, D.R. Faulkner, A.R. Butcher, A.A. Espie, Permeability of the Mercia Mudstone: Suitability as caprock to carbon capture and storage sites, Geofluids 16, pp26-42 (2016) [CrossRef] [Google Scholar]
  18. G.R. Beardsmore, J.R. Cull. Crustal heat flow: a guide to measurement and modelling, Cambridge University Press (2001) [CrossRef] [Google Scholar]
  19. Baggs, S.A., 1983. Remote prediction of ground temperature in Australian soils and mapping its distribution, Solar Energy 30, 351–366 [CrossRef] [Google Scholar]
  20. G.J. Farr, A.M. Patton, D.P. Boon, D.R. James, B. Williams, D.I. Schofield, Mapping shallow urban groundwater temperatures, a case study from Cardiff, UK, Quarterly J. of Engineering Geology and Hydrogeology, 50:2 pp. 187–198 (2017) [CrossRef] [Google Scholar]
  21. Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current). NCAS British Atmospheric Data Centre (2020) [Google Scholar]
  22. COMSOL Multiphysics® v. 5.5, Heat Transfer Module and Subsurface Flow Module User’s Guide [Online]. AC/DC Module User’s Guide, pp. 75-84. COMSOL Multiphysics® v. 5.4. COMSOL AB, Stockholm, Sweden. 2018 [Google Scholar]
  23. K. Menberg, A. Bidarmaghz, A. Gregory, R. Choudhary, M. Girolami, Multi-fidelity approach to Bayesian parameter estimation in subsurface heat and fluid transport models, Science of the Total Environment, under review [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.