Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 07009
Number of page(s) 5
Section Minisymposium: Geothermal Use of Built Urban Infrastructures and the Shallow Subsurface for Energy Storage and Production (organized by Frank Wuttke, Thomas Nagel, Sebastian Bauer and David Smeulders)
Published online 18 November 2020
  1. M.J. Economides. Engineering evaluation of geothermal reservoirs. Int. J. Energ. Res. 9(3), 299-318 (2010). [CrossRef] [Google Scholar]
  2. H. Brandl. Energy foundations and other thermo-active ground structures. Géotechnique 56(2), 81-122 (2006). [Google Scholar]
  3. P.F. Healy and V.I. Ugursal. Performance and economic feasibility of ground source heat pumps in cold climate. Int. J. Energ. Res. 21(10), 857-870 (2015). [CrossRef] [Google Scholar]
  4. S. Miyamoto and M. Takeuchi. Snow-melting system on road using seasonal energy storage through foundation piles for bridge. Proceedings of JSCE 797, 51-62 (2005). [Google Scholar]
  5. W.J. Eugster. Road and bridge heating using geothermal energy. overview and examples. Proceedings of European Geothermal Congress 1-5 (2007). [Google Scholar]
  6. X. Liu, S.J. Rees and J.D. Spitler. Modeling snow melting on heated pavement surfaces. Part II: Experimental validation. Appl. Therm. Eng. 27(5), 1125-1131 (2007). [Google Scholar]
  7. I. Yoshitake, N. Yasumura, M. Syobuzako, A. Scanlon. Pipe heating system with underground water tank for snow thawing and ice prevention on roads and bridge deck. J. Cold. Reg. Eng. 25(2), 71-86 (2011). [CrossRef] [Google Scholar]
  8. N. Nagai, S. Miyamoto, T. Tsuda, S. Yamahata. Experimental xemonstrations and optimal design conditions of ssnow-melting system using geothermal and solar energy. Proceedings of Heat Transfer Summer Conference, 767-771 (2009). [Google Scholar]
  9. G.A. Bowers, C.G. Olgun. Experimental investigation of bridge deck deicing using energy piles. Geotechnical Special Publication-ASCE, 1628-1637 (2015). [Google Scholar]
  10. G. Kong, D. Wu, H. Liu, L. Laloui, X. Cheng, X. Zhu. Performance of a geothermal energy deicing system for bridge deck using a pile heat exchanger. Int. J. Energ. Res. 43(1), 596-603 (2019). [CrossRef] [Google Scholar]
  11. T. Başer, N. Lu, J.S. McCartney. Operational response of a soil-borehole thermal energy storage system. J. Geotech. Geoenviron. Eng. 142(4), 04015097 (2016). [CrossRef] [Google Scholar]
  12. T. Başer, Y. Dong, A.M. Moradi, N. Lu, K. Smits, S. Ge, D. Tartakovsky, and J.S. McCartney. Role of water vapor diffusion and nonequilibrium phase change in geothermal energy storage systems in the vadose zone. J. Geotech. Geoenviron. Eng. 144(7), 04018038 (2018). [Google Scholar]
  13. T. Başer, and J.S. McCartney. Transient performance evaluation of solar thermal energy storage in a geothermal borehole array. Renew. Energ. 147, 2582-2598 (2020). [CrossRef] [Google Scholar]
  14. Q. Gao, Y. Huang, M. Li, Y. Liu, Y.Y. Yan. Experimental study of slab solar collection on the hydronic system of road. Sol. Energy. 84(12), 2096-2102 (2010). [Google Scholar]
  15. A. Saetta, R. Scotta, R. Vitaliani. Stress analysis of concrete structures subjected to variable thermal loads. J. Struct. Eng. 121(3), 446-457 (1995). [CrossRef] [Google Scholar]
  16. S. Wu, M. Chen, J. Zhang. Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs. Appl. Therm. Eng. 31(10), 1582-1587 (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.