Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 07011
Number of page(s) 7
Section Minisymposium: Geothermal Use of Built Urban Infrastructures and the Shallow Subsurface for Energy Storage and Production (organized by Frank Wuttke, Thomas Nagel, Sebastian Bauer and David Smeulders)
DOI https://doi.org/10.1051/e3sconf/202020507011
Published online 18 November 2020
  1. B. Stojanović, J. Akander. Build-up and long-term performance test of a full-scale solar-assisted heat pump system for residential heating in Nordic climatic conditions. Applied Thermal Engineering, 30 (2), 188-195 (2010). [Google Scholar]
  2. A.H. Abedin, M.A. Rosen. A critical review of thermochemical energy storage systems. Open Renewable Energy Journal, 4, 42-46 (2011). [CrossRef] [Google Scholar]
  3. S. Maghsoodi, O. Cuisinier, F. Masrouri. Thermal effects on mechanical behaviour of soil–structure interface. Canadian Geotechnical Journal, 57(1): 32-47 (2019). [CrossRef] [Google Scholar]
  4. T. Başer, J.S. McCartney. Transient evaluation of a soil-borehole thermal energy storage system. Renewable Energy, 147, 2582-2598 (2020). [Google Scholar]
  5. J. Xu, R.Z. Wang, Y. Li. A review of available technologies for seasonal thermal energy storage. Solar Energy, 103, 610-638 (2014). [CrossRef] [Google Scholar]
  6. M. Jradi, C. Veje, B.N. Jørgensen. Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector. Applied Thermal Engineering, 114, 360-373 (2017). [Google Scholar]
  7. A. Boukelia, H. Eslami, S. Rosin-Paumier, F. Masrouri. Effect of temperature and initial state on variation of thermal parameters of fine compacted soils. European Journal of Environmental and Civil Engineering, 23 (9), 1125-1138 (2019). [CrossRef] [Google Scholar]
  8. E. Penner, G.H. Johnston, L.E. Goodrich. Thermal conductivity laboratory studies of some Mackenzie Highway soils. Canadian Geotechnical Journal, 12 (3), 271-288 (1975). [CrossRef] [Google Scholar]
  9. N.H. Abu-Hamdeh, R.C. Reeder. Soil Thermal Conductivity: Effects of Density, Moisture, Salt Concentration, and Organic Matter. Soil Science lSociety of America Journal, 64 (4), 1285–1290 (2000). [CrossRef] [Google Scholar]
  10. J. Yao, H. Oh, W.J. Likos, J.M. Tinjum. Three laboratory methods for measuring thermal resistivity dryout curves of coarse-grained soils. Geotechnical Testing Journal, 37(6), 1056-1067 (2014). [Google Scholar]
  11. M.H. Jahangir, M. Ghazvini, F. Pourfayaz, M. H. Ahmadi. A numerical study into effects of intermittent pump operation on thermal storage in unsaturated porous media. Applied Thermal Engineering, 138, 110-121 (2018). [Google Scholar]
  12. T. Başer, Y. Dong, A.M, Moradi, N. Lu, K. Smits, S. Ge, D. Tartakovsky, J.S. McCartney. Role of nonequilibrium water vapor diffusion in thermal energy storage systems in the vadose zone. Journal of Geotechnical and Geoenvironmental Engineering, 144(7), 04018038 (2018). [CrossRef] [Google Scholar]
  13. K.M. Smits, T. Sakaki, S. E. Howington, J. F. Peters, T.H. Illangasekare. Temperature ependence of thermal properties of sands across a wide range of temperatures (30–70 C). Vadose Zone Journal, 12(1), vzj2012-0033 (2013). [CrossRef] [Google Scholar]
  14. P. Rajeev, J. Kodikara. Estimating apparent thermal diffusivity of soil using field temperature time series. Geomechanics and Geoengineering, 11 (1), 28-46 (2016). [CrossRef] [Google Scholar]
  15. N. Ukrainczyk. Thermal diffusivity estimation using numerical inverse solution for 1D heat conduction. International journal of heat and mass transfer, 52 (25-26), 5675-5681 (2009). [Google Scholar]
  16. N. H. Abu-Hamdeh, A. I. Khdair, R.C. Reeder. A comparison of two methods used to evaluate thermal conductivity for some soils. International Journal of Heat and Mass Transfer, 44 (5), 1073-1078 (2001). [Google Scholar]
  17. D. Kraemer, G. Chen. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy. Review of Scientific Instruments, 85 (2), 025108 (2014). [CrossRef] [Google Scholar]
  18. Y. Jannot, V. Felix, A. Degiovanni. A centered hot plate method for measurement of thermal properties of thin insulating materials. Measurement Science and technology, 21 (3), 035106 10 (2010). [CrossRef] [Google Scholar]
  19. J. R. Bilskie. Dual probe methods for determining soil thermal properties: Numerical and laboratory study. PhD thesis, University of Iowa State, Ames, Lowa, United States. 10679 (1994). [Google Scholar]
  20. R. Coquard, D. Baillis, D. Quenard. Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators. International journal of heat and mass transfer, 49 (23-24), 4511-4524 (2006). [Google Scholar]
  21. W.M. Adams, G. Watts, G. Mason. Estimation of thermal diffusivity from field observations of temperature as a function of time and depth. American Mineralogist, 61 (7-8), 560-568 (1976). [Google Scholar]
  22. R. Horton, P.J. Wierenga, D.R. Nielsen. Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Science Society of America Journal, 47 (1), 25-32 (1983). [CrossRef] [Google Scholar]
  23. Z. Gao, L. Wang, R. Horton. Comparison of six algorithms to determine the soil thermal diffusivity at a site in the Loess Plateau of China. Hydrology and Earth System Sciences Discussions, 6, 2247 (2009). [CrossRef] [Google Scholar]
  24. Y. Jannot, A. Degiovanni. Thermal properties measurement of dry bulk materials with a cylindrical three layers device. Review of Scientific Instruments, 84 (9), 094901 (2013). [CrossRef] [Google Scholar]
  25. A. Boukelia. Physical and numerical modeling of energy geostructures. PhD thesis, University of lorraine, Nancy, France, 187 pp (2016). [Google Scholar]
  26. AFNOR. NF P 94-093: Soils: Investigation and testing. Determination of the compaction characteristics of a soil. Standard Proctor test. Association Française de Normalisation, Paris, France, NF P 94-093. Modified Proctor test (p. 18), (1999b). [Google Scholar]
  27. ASTM Standard D2487. “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA (2000). [Google Scholar]
  28. Devices, D. KD2 pro thermal properties analyzer operator’s manual. Pullman, WA (2016). [Google Scholar]
  29. Y. Jannot, C. Moyne. Thermal properties measurements of materials. ISTE Wiley, edition, p. 299 (2018). [CrossRef] [Google Scholar]
  30. M. Lahoori, Y. Jannot, S. Rosin-Paumier, A. Boukelia, F. Masrouri. Measurement of the thermal properties of unsaturated compacted soil by the transfer function estimation method. Applied Thermal Engineering, 167, 114795 (2020). [Google Scholar]
  31. F.R. De Hoog, J.H. Knight, A.N. Stokes. An improved method for numerical inversion of Laplace transforms. SIAM Journal on Scientific and Statistical Computing, 3 (3), 357-366 (1982). [CrossRef] [Google Scholar]
  32. J. Busby. Determination of thermal properties for horizontal ground collector loops. World Geothermal Congress 2015, 19-25 April, Melbourne, Australia (2015). [Google Scholar]
  33. K. Midttømme, E. Roaldset, P. Aagaard. Thermal conductivity of selected claystones and mudstones from England. Clay Minerals, 33 (1), 131-145 (1998). [Google Scholar]
  34. J. E. Low, F. A. Loveridge, W. Powrie, D. Nicholson. A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications. Acta geotechnica, 10 (2), 209-218 (2015). [Google Scholar]
  35. Y. Jannot, A. Degiovanni, V. Grigorova-Moutiers, J. Godefroy. A passive guard for low thermal conductivity measurement of small samples by the hot plate method Measurement Science and Technology, 28(1), 015008 (2016). [CrossRef] [Google Scholar]
  36. L.A. Salomone, W.D. Kovacs. Thermal resistivity of soils. Journal of Geotechnical Engineering, 110 (3), 375-389 (1984). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.