Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 08001
Number of page(s) 7
Section Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim)
Published online 18 November 2020
  1. A.A. Alalli, Zoback, M. “Microseismic Evidence for Horizontal Hydraulic Fractures in the Marcellus Shale, Southeastern West Virginia,” The Leading Edge, Geomech., May (2018) [Google Scholar]
  2. F. Aminzadeh, “Hydraulic Fracturing, An Overview,” J. Sus. Energy Eng. 6, 3, 204-228 (2018). [Google Scholar]
  3. D.F. Boutt, Goodwin, L., McPherson, B.J.O.L. “Role of Permeability and Storage in the Initiation and Propagation of Natural Hydraulic Fracture,s” Water Resource Res, 45, W00C13 (2009) [Google Scholar]
  4. M.K. Fisher, Heinze, J.R., Harris, C.D., Davidson, B.M., Wright, C.A., Dunn, K.P. “Optimizing Horizontal Completion Techniques in the Barnett Shale Using Microseismic Fracture Mapping,” Proc. Soc. Petro. Eng. Ann. Tech. Conf., Houston, TX, SPE90051 (2004) [Google Scholar]
  5. J.F.W. Gale, Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A. “Natural fractures in shale: a review and new observations,” AAPG Bull., 98, 11, 2165–2216 (2014) [CrossRef] [Google Scholar]
  6. J.F.W. Gale, Reed, R.M., Holder, J. “Natural Fractures in the Barnett Shale and their Importance for Hydraulic Fracture Treatments,” AAPG Bull., 91, 603, 22 (2007) [Google Scholar]
  7. Geomechanica Inc., 2019. Irazu Software. Theory Manual. Toronto, Canada. [Google Scholar]
  8. L.N. Germanovich, Astakhov, D.K., Shlyapobersky, J., Mayerhofer, M.J., Dupont, C., Ring, L.M. “Modeling Multi-segmented Hydraulic Fracture in Two Extreme Cases: No Leak-off and Dominating Leak-off,” Int. J. Rock Mech. Min. Sci., 35, 4–5, 551–554 (1998) [CrossRef] [Google Scholar]
  9. J.P. Harrison, Hudson, J.A. Engineering rock mechanics. Part 2: Illustrative workable examples. (P. Sarkka, Eloranta, P. eds. Oxford, 2000) [Google Scholar]
  10. C. Kirsch, “Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre,” Zeitschrift Vereines Deutscher Ing., 16, 29, 797-807 (1898) [Google Scholar]
  11. A. Lisjak, Kaifosh, P., He, L., Tatone, B.S.A., Mahabadi, O.K., Grasselli, G. “A 2D, Fully-coupled, Hydromechanical, FDEM Formulation for Modeling Fracturing Processes in Discontinuous, Porous Masses,” Comp. Geotech., 81, 1-18 (2017) [CrossRef] [Google Scholar]
  12. A. Lisjak, Mahabadi, O.K., Kaifosh, P., Vietor, T., Grasselli, G. “A Preliminary Evaluation of an Enhanced FDEM Code as a Tool to Simulate Hydraulic Fracturing in Jointed Rock Masses.,” Rock Engineering and Rock Mechanics: Structures in and on Rock Masses, (Alejano, Perucho, Olalla, and Jimenez eds., Taylor and Francis Group, London, 2014) [Google Scholar]
  13. A. Munjiza, Andrews, K.R.F. “Penalty Function Method for Combined Finite-discrete Element Systems Comprising Large Number of Separate Bodies,” Int. J. Numer. Meth. Engng., 49, 1377–1396 (2000) [CrossRef] [Google Scholar]
  14. N.B. Nagel, Sanchez-Nagel, M.A., Zhang, F., Garcia, X., Lee, B. “Coupled Numerical Evaluations of the Geomechanical Interactions between a Hydraulic Fracture Stimulation and a Natural Fracture System in Shale Formations,” Rock Mech. Rock Eng. 46, 581-609 (2013) [Google Scholar]
  15. National Academy of Engineering (NAE), Characterization, Modeling, Monitoring, and Remediation of Fractured Rock (The National Academies Press, Washington, DC, 2015) [Google Scholar]
  16. S. Roshankhah, Cruz, L.G., Shin, H., Lizcano, A., Santamarina, J.C. “Kinematic Dilation during the Hydraulic Stimulation of Pre-fractured Rocks,” Geotech. Lett. 9, 3, 186-192 (2019) [CrossRef] [Google Scholar]
  17. S. Roshankhah, Mohammadi, K. “Fabric-dependent Hydro-mechanical Behavior of Pre-fractured Rocks,” Geocongress, Feb. 25-28, Minneapolis, MN, USA (2020) [Google Scholar]
  18. E. Sarris, Papanastasiou, P. “Modeling of Hydraulic Fracturing in a Poroelastic Cohesive Formation,” Int. J. Geomech., 12, 2, 160-167 (2012) [CrossRef] [Google Scholar]
  19. D.T. Snow, A parallel plate model of fractured permeable media (PhD thesis, UC Berkeley, 1965) [Google Scholar]
  20. H. Sone, Zoback, M.D. “Mechanical Properties of Shale-gas Reservoir Rocks — Part 1: Static and Dynamic Elastic Properties and Anisotropy,” Geophysics, 78, 5, D381-392 (2013a) [CrossRef] [Google Scholar]
  21. H. Sone, Zoback, M.D. “Mechanical Properties of Shale-gas Reservoir Rocks — Part 2: Ductile Creep, Brittle Strength, and their Relation to the Elastic Modulus,” Geophysics, 78, 5, D393-402 (2013b) [CrossRef] [Google Scholar]
  22. C.F. Tsang, Neretnieks, I. “Flow Channeling in Heterogeneous Fractured Rocks,” Reviews of Geophysics, 36, 2, 275-298 (1998) [CrossRef] [Google Scholar]
  23. D. B. van Dam, Papanastasiou, P., de Pater, C.J. “Impact of Rock Plasticity on Hydraulic Fracture Propagation and Closure,” SPE Prod. Facil., 17, 3, 149–159 (2002) [CrossRef] [Google Scholar]
  24. N.R. Warpinski, Kramm, R.C., Heinze, J.R., Waltman, C.K. “Comparison of Single and Dual Array Microseismic Mapping Techniques in the Barnett Shale,” Proc. Soc. Petro. Eng. Ann. Tech. Conf., Dallas, TX, SPE95568 (2005) [Google Scholar]
  25. C. Zhongxiang, Jun, Y. “The Behavior of Naturally Fractured Reservoirs Including Fluid Flow in Matrix Blocks,” Transport in Porous Media, 2, 147-163 (1987) [Google Scholar]
  26. R.W. Zimmerman, Bodvarsson, G.S. “Hydraulic Conductivity of Rock Fractures,” Transport in Porous Media, 23, 1-30 (1996) [Google Scholar]
  27. M.D. Zoback, Reservoir Geomechanics (Cambridge University Press, 2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.