Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 08002
Number of page(s) 6
Section Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim)
Published online 18 November 2020
  1. Mimouni T, Laloui L. Behaviour of a group of energy piles. Can Geotech J 2015; 52(12): 1913-1929. [Google Scholar]
  2. Moel Md, Bach PM, Bouazza A, Singh RM, Sun JO. Technological advances and applications of geothermal energy pile foundations and their feasibility in australia. Renewable Sustainable Energy Rev 2010; 14(9): 2683-2696. [Google Scholar]
  3. Bourne-Webb PJ, Amatya B, Soga K, Amis T, Davidson C, Payne P. Energy pile test at lambeth college, london-geotechnical and thermodynamic aspects of pile response to heat cycles. Geotechnique 2009; 59(3): 237-248. [Google Scholar]
  4. Başer T, Lu N, McCartney JS. Operational response of a soil-borehole thermal energy storage system. J Geotech Geoenviron 2016; 142(4): 04015097. [Google Scholar]
  5. Murphy KD, McCartney JS, Henry KS. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech 2014; 10(2): 179-195. [Google Scholar]
  6. Gao J, Zhang X, Liu J, Li K, Yang J. Numerical and experimental assessment of thermal performance of vertical energy piles: An application. Appl Energ 2008; 85(10): 901-910. [Google Scholar]
  7. Liu H-l, Wang C-l, Kong G-q, Ng CWW, Che P. Model tests on thermo-mechanical behavior of an improved energy pile. European Journal of Environmental and Civil Engineering 2017: 1-16. [Google Scholar]
  8. Stewart, M. A., Coccia, C. J. R., and McCartney, J. S. (2014). “Issues in the Implementation of Sustainable Heat Exchange Technologies in Reinforced, Unsaturated Soil Structures.” Proceedings of GeoCongress 2014 (GSP 234), 4066-4075. [Google Scholar]
  9. Fadejev J, Simson R, Kurnitski J, Haghighat F. A review on energy piles design, sizing and modelling. Energy 2017; 122: 390-407. [CrossRef] [Google Scholar]
  10. Knellwolf C, Peron H, Laloui L. Geotechnical analysis of heat exchanger piles. J Geotech Geoenviron 2011; 137(10): 890-902. [Google Scholar]
  11. Wang C-l, Liu H-l, Kong G-q, Ng CWW, Wu D. Model tests of energy piles with and without a vertical load. Environmental Geotechnics 2016; 3(4): 203-213. [CrossRef] [Google Scholar]
  12. Brandl H. Energy foundations and other thermo-avtive ground structures. Geotechnique 2006; 56(2): 81-122. [CrossRef] [Google Scholar]
  13. Coccia CJR, McCartney JS. Impact of heat exchange on the thermo-hydro-mechanical response of reinforced embankments. Proceedings of GeoCongress 2013, ASCE 2013; (3-5): 343-352. [Google Scholar]
  14. Croll JGA. The role of thermal ratcheting in pavement failures. Proceedings of the Institution of Civil Engineers - Civil Engineering 2009; 162(3): 127-140. [CrossRef] [Google Scholar]
  15. Kertesz R, Sansalone J. Hydrologic transport of thermal energy from pavement. J Environ Eng 2014; 140(8): 04014028. [CrossRef] [Google Scholar]
  16. Abuel-Naga HM, Bergado DT, Ramana GV, Grino L, Rujivipat P, Thet Y. Experimental evaluation of engineering behavior of soft bangkok clay under elevated temperature. Journal of Geotechnical and Geoenvironment Engineering 2006; 132(7): 902-910. [Google Scholar]
  17. Baldi G, Hueckel T, Pellegrini R. Thermal volume changes of the mineral-water system in low-porosity clay soils. Can Geotech J 1988; 25(4): 807-825. [CrossRef] [Google Scholar]
  18. Cekerevac C, Laloui L. Experimental study of thermal effects on the mechanical behaviour of a clay. Int J Numer Anal Met 2004; 28(3): 209-228. [Google Scholar]
  19. Ng CWW, Zhou C. Cyclic behaviour of an unsaturated silt at various suctions and temperatures. Geotechnique 2014; 64(9): 709-720. [CrossRef] [Google Scholar]
  20. Romero E, Villar MV, Lloret A. Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays. Eng Geol 2005; 81(3): 255-268. [Google Scholar]
  21. Soleimanbeigi A, Edil TB, Benson CH. Effect of temperature on geotechnical properties of recycled asphalt shingle mixtures. Journal of Geotechnical and Geoenvironment Engineering 2014; 141(2): 04014097. [CrossRef] [Google Scholar]
  22. Uchaipichat A, Khalili N. Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt. Geotechnique 2009; 59(4): 339-353. [Google Scholar]
  23. Vega A, McCartney JS. Cyclic heating effects on thermal volume change of silt. Environmental Geotechnics 2015; 2(5): 257-268. [Google Scholar]
  24. Zhou C, Ng CWW. Effects of temperature and suction on plastic deformation of unsatured silt under cyclic loads. J Mater Civil Eng 2016; 28(12): 04016170. [CrossRef] [Google Scholar]
  25. Burghignoli A, Desideri A, Miliziano S. A laboratory study on the thermomechanical behaviour of clayey soils. Can Geotech J 2000; 37(4): 764-780. [Google Scholar]
  26. Ng CWW, Wang SH, Zhou C. Volume change behaviour of saturated sand under thermal cycles. Geotechnique Letters 2016; 6: 1-8. [CrossRef] [Google Scholar]
  27. Liu H, Liu HL, Xiao Y, McCartney JS. Influence of temperature on the volume change behavior of saturated sand. Geotech Test J 2018; 41(4): 20160308. [CrossRef] [Google Scholar]
  28. D2487 A. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken, PA 2011. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.