Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 08003
Number of page(s) 5
Section Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim)
DOI https://doi.org/10.1051/e3sconf/202020508003
Published online 18 November 2020
  1. R. Lenormand, E. Touboul, C. Zarcone, Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165-187 (1988) [Google Scholar]
  2. H. Shin, J.C. Santamarina, Desiccation cracks in saturated fine-grained soils: particle-level phenomena and effective-stress analysis. Geotechnique. 61(11), 961 (2011) [CrossRef] [Google Scholar]
  3. D.G. Fredlund, H. Rahardjo. Soil mechanics for unsaturated soils (John Wiley & Sons, 1993) [Google Scholar]
  4. C.T. Simmons, M.L. Pierini, J.L. Hutson, Laboratory investigation of variable-density flow and solute transport in unsaturated-saturated porous media. Transport Porous Med. 47(2), 215-244 (2002) [CrossRef] [Google Scholar]
  5. L.W. Lake, R. Rossen, W.R. Rossen, G.A. Pope. Fundamentals of enhanced oil recovery (2014) [Google Scholar]
  6. L.K. Abidoye, K.J. Khudaida, D.B. Das, Crit. Geological carbon sequestration in the context of two-phase flow in porous media: a review. Rev. Env. Sci. Tec. 45(11), 1105-1147 (2015) [CrossRef] [Google Scholar]
  7. R. Jeanloz, H. Stone. Enhanced geothermal systems (EERE Publication and Product Library, 2013) [CrossRef] [Google Scholar]
  8. C.F. Tsang, editor. Coupled processes associated with nuclear waste repositories (Elsevier, 2012) [Google Scholar]
  9. D.Y. Yap, D.P. Gaver III, The influence of surfactant on two-phase flow in a flexible-walled channel under bukl equilibrium conditions. Phys. Fluids, 10(8), 1846-1863 (1998) [CrossRef] [Google Scholar]
  10. J. Dong, K. Inthavong, J. Tu. Multiphase flows in biomedical applications. In Handbook of multiphase flow science and technology, 1-24 (2017) [Google Scholar]
  11. C.X. Zhao. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Deliv. Rev. 65(11-12), 1420-1446 (2013) [CrossRef] [PubMed] [Google Scholar]
  12. B. Jeong, Y. Zhao, D.H. Kang, S. Dai. An experimental study of the effect of motile bacteria on the fluid displacement in porous media. ICEGT Proceedings, La Jolla, CA (2020) [Google Scholar]
  13. K. Son, D.R. Brumley, R. Stocker. Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nat. Rev. Microbiol. 13(12), 761-775 (2015) [CrossRef] [PubMed] [Google Scholar]
  14. H.M. López, J. Gachelin, C. Douarche, H. Auradou, E. Clément. Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115(2), 028301 (2015) [CrossRef] [PubMed] [Google Scholar]
  15. J. Eastoe, J.S. Dalton. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv. Colloid Interface Sci. 85(2-3), 103-44 (2000) [CrossRef] [PubMed] [Google Scholar]
  16. N. Bizmark, M.A. Ioannidis, D.E. Henneke. Irreversible adsorption-driven assembly of nanoparticles at fluid interfaces revealed by a dynamic surface tension probe. Langmuir, 30(3), 710-717 (2014) [CrossRef] [PubMed] [Google Scholar]
  17. K. Du, E. Glogowski, T. Emrick, T.P. Russell, A.D. Dinsmore. Adsorption energy of nano-and microparticles at liquid-liquid interfaces. Langmuir, 26(15), 12518-12522 (2010) [CrossRef] [PubMed] [Google Scholar]
  18. J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V.A. Martinez, W.C. Poon. Escherichia coli as a model active colloid: A practical introduction. Colloids Surf. B Biointerfaces. 137, 2-16 (2016) [CrossRef] [PubMed] [Google Scholar]
  19. N.C. Darnton, L. Turner, S. Rojevsky, H.C. Berg. On torque and tumbling in swimming Escherichia coli. J. Bacteriology, 189(5), 1756-1764 (2007) [CrossRef] [PubMed] [Google Scholar]
  20. J. Drelich, C. Fang, C.L. White. Measurement of interfacial tension in fluid-fluid systems. In Encyclopedia of surface and colloid science, 3, 3158-3163 (2002) [Google Scholar]
  21. N.C. Christov, K.D. Danov, P.A. Kralchevsky, K.P. Ananthapadmanabhan, A. Lips. Maximum bubble pressure method: Universal surface age and transport mechanisms in surfactant solutions. Langmuir, 22(18), 7528-7542 (2006) [CrossRef] [PubMed] [Google Scholar]
  22. T. Young. An essay on the cohesion of fluids. Philos. Trans. R. Soc, 95, 65-87, (1805) [CrossRef] [Google Scholar]
  23. J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y. Chan, R.F. Tabor. Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226-237 (2015) [Google Scholar]
  24. P. L. du Noüy. A new apparatus for measuring surface tension. J. Gen. Physiol. 1, 521-524 (1919) [CrossRef] [PubMed] [Google Scholar]
  25. W.D. Harkins, H.F. Jordan. A method for the determination of surface and interfacial tension from the maximum pull on a ring. J. Am. Chem. Soc. 52(5), 1751-1772 (1930) [Google Scholar]
  26. J. Adler, B. Templeton. The effect of environmental conditions on the motility of Escherichia coli. Microbiol., 46(2), 175-184 (1967) [Google Scholar]
  27. B.B. Lee, E.S. Chan, P. Ravindra, T.A. Khan. Surface tension of viscous biopolymer solutions measured using the du Nouy ring method and the drop weight methods. Polym. Bull. 69(4), 471-489 (2012) [CrossRef] [Google Scholar]
  28. K.L. Mysels. Improvements in the maximum-bubble-pressure method of measuring surface tension. Langmuir. 2(4), 428-432 (1986) [Google Scholar]
  29. C.J. Van Oss. Interfacial forces in aqueous media (CRC press 2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.