Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 08009
Number of page(s) 7
Section Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim)
Published online 18 November 2020
  1. D. Massonnet, T. Holzer, H. Vadon, “Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry”, Geophys. Res. Lett., 24(8): p. 901-904 (1997) [Google Scholar]
  2. J.E. Streit, R.R. Hillis, “Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock”, Energy, 29(9): p. 1445-1456 (2004) [CrossRef] [Google Scholar]
  3. P. Pan, Z. Wu, X. Feng,F. Yan, “Geomechanical modeling of CO2 geological storage: A review”, Journal of Rock Mechanics and Geotechnical Engineering, 8(6) p. 936-947 (2016) [CrossRef] [Google Scholar]
  4. S.N. Pandey, A. Chaudhuri, S. Kelkar, “A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir”, Geothermics., 65 p. 17-31 (2017) [Google Scholar]
  5. A. Kharaghani, T. Metzger, E. Tsotsas, “A proposal for discrete modeling of mechanical effects during drying, combining pore networks with DEM”, AICHE J., 57(4) p. 872-885 (2011) [Google Scholar]
  6. R. Holtzman, M.L. Szulczewski, R. Juanes, “Capillary fracturing in granular media”, Phys. Rev. Lett., 108(26): p. 264504 (2012) [CrossRef] [PubMed] [Google Scholar]
  7. C.W. MacMinn, E.R. Dufresne, J.S. Wettlaufer, “Fluid-driven deformation of a soft granular material”, Phys.Rev. X., 5(1): p. 011020 (2015) [Google Scholar]
  8. R. Lenormand, E. Touboul, C. Zarcone, “Numerical models and experiments on immiscible displacements in porous media”, J. Fluid Mech., 189: p. 165-187 (1988) [Google Scholar]
  9. X. Zheng, N. Mahabadi, T.S. Yun, J. Jang, “Effect of capillary and viscous force on CO2 saturation and invasion pattern in the microfluidic chip”, J. Geophys. Res. Solid Earth., 122(3): p. 1634-1647 (2017) [Google Scholar]
  10. C. Chang, T.J. Kneafsey, Q. Zhou, M. Oostrom,Y. Ju, “Scaling the impacts of pore-scale characteristics on unstable supercritical CO2-water drainage using a complete capillary number”, Int. J. Greenh. Gas Con., 86: p. 11-21 (2019) [CrossRef] [Google Scholar]
  11. E. Aker, K. JØrgen MÅlØy, A. Hansen, G.G. Batrouni, “A two-dimensional network simulator for two-phase flow in porous media”, Transport Porous Med., 32(2): p. 163-186 (1998) [CrossRef] [Google Scholar]
  12. G.M. Badillo, L.A. Segura,J.B. Laurindo, “Theoretical and experimental aspects of vacuum impregnation of porous media using transparent etched networks”, Int. J. Multiphase Flow, 37(9): p. 1219-1226 (2011) [CrossRef] [Google Scholar]
  13. R. Holtzman,R. Juanes, “Crossover from fingering to fracturing in deformable disordered media”, Phys. Rev. E., 82(4): p. 046305 (2010) [Google Scholar]
  14. K.L. Johnson, Contact mechanics (Cambridge University Press, 1987) [Google Scholar]
  15. L.F. Nielsen, “Strength and stiffness of porous materials”, J. Am. Ceram. Soc., 73(9): p. 2684-2689 (1990) [Google Scholar]
  16. M.K. Jeon, S. Kim, A. Hosseini Zadeh, T.H Kwon, “Study on Viscous Fluid Flow in Disordered-Deformable Porous Media Using Hydro-mechanically Coupled Pore-Network Modeling”, Transport Porous Med., 133: p. 207-227(2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.