Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 08010
Number of page(s) 6
Section Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim)
Published online 18 November 2020
  1. R. Sahai, R.G. Moghanloo. Proppant transport in complex fracture networks – A review. J. Pet. Sci. Eng. 182 (2019). [Google Scholar]
  2. S.R. Brown. Simple mathematical model of a rough fracture. J. Geophys. Res. Solid Earth 100, 41 (1995). [Google Scholar]
  3. E.J. Novotny. Proppant Transport. SPE Annu. Fall Tech. Conf. Exhib. (1977). [Google Scholar]
  4. Y. Liu, M.M. Sharma. Effect of Fracture Width and Fluid Rheology on Proppant Settling and Retardation: An Experimental Study. SPE Annu. Tech. Conf. Exhib. (2005). [Google Scholar]
  5. L. Luo, I. Tomac. Experimental Investigation of Particle Agglomeration Effects on Slurry Settling in Viscous Fluid. Transp. Porous Media 121, 333 (2018). [Google Scholar]
  6. X. Huang, P. Yuan, H. Zhang, J. Han, A. Mezzatesta, J. Bao. Numerical Study of Wall Roughness Effect on Proppant Transport in Complex Fracture Geometry. SPE Mid. East Oil Gas Show Conf. (2017). [Google Scholar]
  7. G.G. Stokes. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans. Camb. Phil. Soc. 9, 8 (1851). [Google Scholar]
  8. S.M. Peker and S.S. Helvaci. Solid-Liquid Two Phase Flow. (2008). [Google Scholar]
  9. A.C. Barbati, J. Desroches, A. Robisson, G.H. McKinley. Complex Fluids and Hydraulic Fracturing. Annu. Rev. Chem. Biomol. Eng. 7, 415 (2016); [CrossRef] [PubMed] [Google Scholar]
  10. H. Rouse. Nomogram for the settling velocity of spheres. (1937) [Google Scholar]
  11. P.A. Cundall, O.D.L. Strack. A discrete numerical model for granular assemblies. Géotechnique 29, 47 (1979). [CrossRef] [Google Scholar]
  12. C. Kloss, C. Goniva, A. Hager, S. Amberger, S. Pirker. Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid. Dyn. 12, 140 (2012). [CrossRef] [Google Scholar]
  13. H.G. Weller, G. Tabor, H. Jasak, C. Fureby. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620 (1998). [CrossRef] [Google Scholar]
  14. C. Goniva, C. Kloss, N.G. Deen, J.A.M. Kuipers, S. Pirker. Influence of rolling friction on single spout fluidized bed simulation. Particuology 10, 582 (2012). [CrossRef] [Google Scholar]
  15. A. Hager. CFD-DEM on multiple scales: An extensive investigation of particle–fluid interactions (Dissertation). (2014). [Google Scholar]
  16. A. Hager, C. Kloss, S. Pirker, C. Goniva. Parallel resolved open source CFD-DEM: Method, validation and application. J. Comput. Multiph. Flows. 6, 13 (2014). [CrossRef] [Google Scholar]
  17. Brown, S.R. A note on the description of surface roughness using fractal dimension. Geophys. Res. Lett. 14: 1095 (1987). [Google Scholar]
  18. B.B. Mandelbrot. The Fractal Geometry of Nature. (1983). [Google Scholar]
  19. J. Vuopio, J. Polla. Characterization of the Rock Joint Surface. (1997). [Google Scholar]
  20. S.R. Brown. Fluid Flow Through Rock Joints: The Effect of Surface Roughness. J. Geophys. Res. 92, 1337 (1987). [Google Scholar]
  21. S.R. Ogilvie, E. Isakov, P.W.J. Glover. Fluid flow through rough fractures in rocks. II: A new matching model for rough rock fractures. Earth Planet Sci. Lett. 241, 454 (2006). [Google Scholar]
  22. H. Qiu, N.S. Lam, D.A. Quattrochi, J.A. Gamon. Fractal Characterization of Hyperspectral Imagery. Photogramm. Eng. Remote. Sens. 65, 63 1999. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.