Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 11002
Number of page(s) 6
Section Minisymposium: Physical and Numerical Modeling of Hydrate-Bearing Sediments (organized by Sheng Dai)
DOI https://doi.org/10.1051/e3sconf/202020511002
Published online 18 November 2020
  1. J. C. Santamarina, S. Dai, M. Terzariol, et al., “Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough,” Marine and Petroleum Geology, 66, 434-450, (2015) [Google Scholar]
  2. J. Yoneda, A. Masui, Y. Konno, Y. Jin, K. Egawa, M. Kida, T. Ito, J. Nagao and N. Tenma, “Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression,” Marine and Petroleum Geology, 66, 451-459, (2015) [Google Scholar]
  3. A. Masui, H. Haneda, Y. Ogata and K. Aoki, “The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments,” in The 5th International Conference on Gas Hydrates, Trondheim, Norway, (2005) [Google Scholar]
  4. K. Miyazaki, A. Masui, Y. Sakamoto, K. Aoki, N. Tenma and T. Yamaguchi, “Triaxial compressive properties of artificial methane-hydrate-bearing sediment,” Journal of Geophysical Research: Solid Earth, 116, 6, 1-11, (2011) [Google Scholar]
  5. M. Hyodo, J. Yoneda, N. Yoshimoto and Y. Nakata, “Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed,” Soils and Foundations, 53, 2, 299-314, (2013) [CrossRef] [Google Scholar]
  6. A. Kato, Y. Nakata, M. Hyodo and N. Yoshimoto, “Macro and micro behaviour of methane hydrate-bearing sand subjected to plane strain compression,” Soils and Foundations, 56, 5, 835-847, (2016) [CrossRef] [Google Scholar]
  7. K. Soga, M. Ng, S. Lee and A. Klar, “Characterisation and engineering properties of methane hydrate soils,” in Characterisation and Engineering Properties of Natural Soils, London, Taylor and Francis, 2591-2642, (2006) [Google Scholar]
  8. F. Waite, J. Santamarina, D. Cortes, et al., “Physical properties of hydrate-bearing sediments,” Reviews of Geophysics, 47, 4, 1-38, (2009) [CrossRef] [Google Scholar]
  9. H. Moulinec and P. Suquet, “A fast numerical method for computing the linear and nonlinear mechanical properties of composites,” Comptes Rendus de l’Académie des Sciences Série II, 318, 1417-1423, (1994) [Google Scholar]
  10. H. Moulinec and P. Suquet, “A numerical method for computing the response of composites with periodic microstructure,” Comput. Methods Appl. Mech. Engrg., 157, 69-94, (1998) [CrossRef] [Google Scholar]
  11. J. C. Michel, H. Moulinec and P. Suquet, “A computational method based on augmented lagrangians and fast fourier transforms for composites with high contrast,” Computer Modeling in Engineering and Sciences, 1, 2, 79-88, (2000) [Google Scholar]
  12. S. Brisard and L. Dormieux, “FFT-based methods for the mechanics of composites: A general variational framework,” Computational Materials Science, 49, 3, 663-671, (2010) [Google Scholar]
  13. V. Monchiet and G. Bonnet, “Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme,” Computational Materials Science, 79, 276-283, (2013) [Google Scholar]
  14. E. V. Rees, J. A. Priest and C. R. Clayton, “The structure of methane gas hydrate bearing sediments from the Krishna-Godavari Basin as seen from Micro-CT scanning,” Marine and Petroleum Geology, 28, 7, 1283-1293, (2011) [Google Scholar]
  15. J. Zeman, J. Vondřejc, J. Novák and I. Marek, “Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients,” Journal of Computational Physics, 229, 21, 8065-8071, (2010) [Google Scholar]
  16. L. Gélébart and R. Mondon-Cancel, “Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials,” Computational Materials Science, 77, 430-439, (2013) [Google Scholar]
  17. S. Balay, S. Abhyankar, M. Adams, et al., “PETSc Web page,” [Online]. Available: https://www.mcs.anl.gov/petsc. [Accessed 2019]. [Google Scholar]
  18. S. Brisard, “moisan2011,” github.com, [Online]. Available: https://github.com/sbrisard/moisan2011. [Accessed 24 June 2019]. [Google Scholar]
  19. L. Moisan, “Periodic Plus Smooth Image Decomposition,” Journal of Mathematical Imaging and Vision, 39, 2, 161-179, (2011) [Google Scholar]
  20. S. S. Torisu, J.-M. Pereira, V. De Gennaro, P. Delage and A. Puech, “Strain-rate effects in deep marine clays from the Gulf of Guinea,” Géotechnique, 62, 9, 767-775, (2012) [CrossRef] [Google Scholar]
  21. M. O. Hyodo, a. F. L. Hyde, I. Nakata, N. Yoshimoto, M. Fukunaga, K. Kubo, Y. Nanjo, T. Matsuo and K. Nakamura, “Triaxial Compressive Strength of Methane Hydrate,” in The Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, (2002) [Google Scholar]
  22. E. D. Sloan and C. Koh, Clathrate Hydrates of Natural Gases, Third ed., Boca Raton: CRC Press, 2007. [CrossRef] [Google Scholar]
  23. F. Yu, Y. Song, W. Liu, Y. Li and W. Lam, “Analyses of stress strain behavior and constitutive model of artificial methane hydrate,” Journal of Petroleum Science and Engineering, 77, 2, 183-188, (2011) [CrossRef] [Google Scholar]
  24. C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. Dezonia, A. E. Walter, E. T. Arena and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics, 18, 529, (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.