Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 11001
Number of page(s) 5
Section Minisymposium: Physical and Numerical Modeling of Hydrate-Bearing Sediments (organized by Sheng Dai)
Published online 18 November 2020
  1. C.R.I. Clayton, J.A. Priest, E.V.L. Rees. The effects of hydrate cement on the stiffness of some sands. Geotechnique 60, 435–45 (2010) [CrossRef] [Google Scholar]
  2. S. Dai, J.C. Santamarina, W.F. Waite, T.J. Kneafsey. Hydrate morphology: Physical properties of sands with patchy hydrate saturation. J. Geophy. Res.: Solid Earth 117, B11205 (2012) [Google Scholar]
  3. M. Hyodo, J. Yoneda, N. Yoshimoto, Y. Nakata. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils & Found. 53, 299–314 (2013) [CrossRef] [Google Scholar]
  4. M. Hyodo, Y. Wu, K. Nakashima, S. Kajiyama, Y. Nakata. Influence of fines content on the mechanical behavior of methane hydrate‐bearing sediments. J. Geophy. Res.: Solid Earth 122, 2017JB 014154 (2017). [CrossRef] [Google Scholar]
  5. L. Liang, J.C. Santamarina. Laboratory strategies for hydrate formation in fine-grained sediments. J. Geophy. Res.: Solid Earth 123, 2017JB014624 (2018) [Google Scholar]
  6. X. Wang, D.R. Hutchinson, S. Wu, S. Yang, Y. Guo. Elevated gas hydrate saturation within silt and silty clay sediments in the shenhu area, south china sea. J. Geophy. Res.: Solid Earth 116, B05102 (2011) [Google Scholar]
  7. F.B. Martins, L.A. Bressani, M.R. Coop, A.V.D. Bica. Some aspects of the compressibility behaviour of a clayey sand. Can. Geotech. J. 38, 1177–1186. (2001) [CrossRef] [Google Scholar]
  8. L. Xu, M.R. Coop. The mechanics of a saturated silty loess with a transitional mode. Geotechnique 67, 581–596 (2017) [CrossRef] [Google Scholar]
  9. B. Shipton, M.R. Coop. Transitional behaviour in sands with plastic and nonplastic fines. Soils & Found. 55, 1–16 (2015) [CrossRef] [Google Scholar]
  10. M.C. Todisco, M.R. Coop, J.M. Pereira. Fabric characterisation in transitional soils. Granul. Matter 20, 20 (2018) [Google Scholar]
  11. F. Altuhafi, B.A. Baudet, P. Sammonds. The mechanics of subglacial sediment: an example of new “transitional” behaviour. Can. Geotech. J. 47, 775–790 (2010) [CrossRef] [Google Scholar]
  12. P.M.V. Ferreira, A.V.D. Bica. Problems in identifying the effects of structure and critical state in a soil with a transitional behaviour. Geotechnique 56, 445–454 (2006) [CrossRef] [Google Scholar]
  13. E. Elkamhawy, B. Zhou, H.B. Wang. Transitional behavior in well-graded soils: An example of completely decomposed granite. Eng. Geol. 253, 240–250 (2019) [Google Scholar]
  14. T.D. Pitman, P.K. Robertson, D.C. Sego. Influence of fines on the collapse of loose sands. Can. Geotech. J. 31, 728–739 (1994) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.