Open Access
E3S Web Conf.
Volume 207, 2020
25th Scientific Conference on Power Engineering and Power Machines (PEPM’2020)
Article Number 02010
Number of page(s) 11
Section Renewable Energy and Environmental Protection
Published online 18 November 2020
  1. K. Bai, J. Katz, C. Meneveau, Turbulent flow structure inside a canopy with complex multi-scale elements. Bound.-Layer Meteorol. 155, 435-457 (2015) [CrossRef] [Google Scholar]
  2. B. Conan, S. Aubrun, B. Coudour, K. Chetehouna, J.P Garo, Contribution of coherent structures to momentum and concentration fluxes over a flat vegetation canopy modelled in a wind tunnel. Atmos. Environ. 107, 329-341 (2015) [Google Scholar]
  3. B. Ruck, C. Frank, M. Tischmacher, On the influence of windward edge structure and stand density on the flow characteristics at forest edges. Eur. J. For. Res. 131, 177-189 (2012). [Google Scholar]
  4. S. Aubrun, R. Koppmann, B. Leitl, M. M€ollmann-Coers, A. Schaub, Physical modelling of a complex forest area in a wind tunnel-comparison with field data. Agric. For. Meteorol. 129, 121-135 (2005) [Google Scholar]
  5. C. Gromke, Wind tunnel model of the forest and its Reynolds number sensitivity, Journal of Wind Engineering and Industrial Aerodynamics 175 53-64 (2018). [CrossRef] [Google Scholar]
  6. C. Gromke, B. Ruck, On Wind Forces in the Forest Edge Region during Extreme Gust Passages and Their Implications for Damage Patterns. Boundary-Layer Meteorology, Vol. 168, pp. 269-288 (2018) [Google Scholar]
  7. D. Yoder, J. DeBonis, N. Georgiadis, Modeling of turbulent free shear flows, NASA/TM-2013-218072, AIAA Paper 2013-2721, E-18747, (2013) [Google Scholar]
  8. L. J. S. Bradbury, “The Structure of a Self-Preserving Turbulent Plane Jet,” Journal of Fluid Mechanics, Vol. 23, No. 1, pp. 31-64 (1965). [Google Scholar]
  9. I. Wygnanski, H.E. Fiedler, “Some Measurements in the Self-Preserving Jet,” Journal of Fluid Mechanics, Vol. 38, No. 3, pp. 577-612 (1969) [Google Scholar]
  10. J. Picket, Turbulent Flows: Models and Physics, Springer, ISBN-lO: 3540654119 (1999) [Google Scholar]
  11. J.S. Connelly, M.P. Schultz, K.A. Flack, Velocity-defect scaling for turbulent boundary layers with a range of relative roughness, Experiments in Fluids 40: 188-195 DOI 10.l007/s00348-005-0049-x (2006) [Google Scholar]
  12. D. Coles, The law of the wake in the turbulent boundary layer. Journal of Fluid Mechanics, 1(2), 191-226. doi:l0.l017/S0022112056000135 (1956) [CrossRef] [Google Scholar]
  13. P.S. Granville, A modified law of the wake for turbulent shear layers. J Fluids Eng 98:578-580 (1976) [Google Scholar]
  14. VDI 3783. Environmental meteorology, physical modelling of flow and dispersion processes in the atmospheric boundary layer. Verein Deutscher Ingenieure (2000) [Google Scholar]
  15. K.R. Sreenivasan, “The Turbulent Boundary Layer,” Frontiers in Experimental Fluid Mechanics, edited by M. Gad-el-Hak, Springer-Verlag,Berlin, pp. 159-209 (1989) [CrossRef] [Google Scholar]
  16. OpenFoam user guide, [Google Scholar]
  17. S. Dupont, Y. Brunet, Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630:93-128, doi:l0.l017/S0022112009006739 (2009) [Google Scholar]
  18. C. Meneveau, T.S. Lund, W.H. Cabot, A Lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid Mechanics, 319, 353-385 (1996) [Google Scholar]
  19. M. Klein, A. Sadiki, J. Janicka - A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations - Journal of Computational Physics, Volume 186, Issue 2, pp 652-665 (2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.