Open Access
Issue
E3S Web Conf.
Volume 209, 2020
ENERGY-21 – Sustainable Development & Smart Management
Article Number 03011
Number of page(s) 5
Section Session 2. Advanced Energy Technologies: Clean, Resource-Saving, and Renewable Energy
DOI https://doi.org/10.1051/e3sconf/202020903011
Published online 23 November 2020
  1. S. Suman, J. Clean. Prod. 181, 166 (2018). DOI: 10.1016/j.jclepro.2018.01.262 [Google Scholar]
  2. A.F. Ghoniem, Prog. Energy Comb. Sci. 37, 15 (2011). DOI: 10.1016/j.pecs.2010.02.006 [CrossRef] [Google Scholar]
  3. D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, Renew. Sust. Energy Rev., 39, 426 (2014). DOI: 10.1016/j.rser.2014.07.093 [CrossRef] [Google Scholar]
  4. D. Tilman, J. Hill, C. Lehman, Science, 314, 1598 (2006). DOI: 10.1126/science.1133306 [Google Scholar]
  5. L. Chen, S.Z. Yong, A.F. Ghoniem, Prog. Energy Comb. Sci. 38, 156 (2012). DOI: 10.1016/j.pecs.2011.09.003 [CrossRef] [Google Scholar]
  6. V. Tola, A. Pettinau, Applied Energy 113, 1461 (2014). DOI: 10.1016/j.apenergy.2013.09.007 [Google Scholar]
  7. M.B. Toftegaard, J. Brix, P.A. Jensen, P. Glarborg, A.D. Jensen, Prog. Energy Comb. Sci. 36, 581 (2010). DOI: 10.1016/j.pecs.2010.02.001 [CrossRef] [Google Scholar]
  8. C.-C. Cormos, Fuel 169, 50 (2016). DOI: 10.1016/j.fuel.2015.12.005 [CrossRef] [Google Scholar]
  9. G. Cau, V. Tola, F. Ferrara, A. Porcu, A. Pettinau, Fuel 214, 423 (2018). DOI: 10.1016/j.fuel.2017.10.023 [CrossRef] [Google Scholar]
  10. Z. Mao, L. Zhang, X. Zhu, C. Zheng, Fuel Proc. Tech. 162, 126 (2017). DOI: 10.1016/j.fuproc.2017.04.002 [CrossRef] [Google Scholar]
  11. Y. Oki, S. Hara, S. Umemoto, K. Kidoguchi, H. Hamada, M. Kobayashi, Y. Nakao, Energy Procedia 63, 471 (2014). DOI: 10.1016/j.egypro.2017.03.1192 [Google Scholar]
  12. P.A.Ralnikov, N.A. Abaimov, A.F. Ryzhkov, J. Phys.: Conf. Ser. 1128, 012007, (2018). DOI: 10.1088/1742-6596/1128/1/012007 [CrossRef] [Google Scholar]
  13. H. Watanabe, S. Ahn, K. Tanno, Energy 118, 181 (2017). DOI: 10.1016/j.energy.2016.12.031 [CrossRef] [Google Scholar]
  14. C. Liang, H. Zhang, Z. Zhu, Y. Na, Q. Lu, Fuel 200, 81 (2017). DOI: 10.1016/j.fuel.2017.03.032 [CrossRef] [Google Scholar]
  15. K. Kidoguchi, S. Hara, Y. Oki, S. Kajitani, S. Umemoto, J. Inumaru, Proc. ASME 2011 Power Conf. 2, 485 (2011). DOI: 10.1115/POWER2011-55458 [Google Scholar]
  16. H. Tsuji, A.K. Gupta, T. Hasewaga, M. Katsuki, K. Kishimoto, M. Morita, High temperature air combustion. From energy conservation to pollution reduction (CRC Press, 2003). DOI: 10.1201/9781420041033 [Google Scholar]
  17. K. Yoshikawa, Proc. 2nd International Seminar on High Temperature Air Combustion (2000). [Google Scholar]
  18. S. Sugiyama, N. Suzuki, Y. Kato, K. Yoshikawa, A. Omino, T. Ishii, K. Yoshikawa, T. Kiga, Energy 30, 399 (2005). DOI: 10.1016/j.energy.2004.06.001 [CrossRef] [Google Scholar]
  19. A.F. Ryzhkov, N.A. Abaimov, I.G. Donskoy, D.A. Svishchev, Combust. Explos. Shock Waves 54, 337 (2018). DOI: 10.1134/S0010508218030103 [Google Scholar]
  20. I.G. Donskoy, Energy Systems Research 2, 55 (2019). DOI: 10.25729/esr.2019.03.0007 [Google Scholar]
  21. A.F.Ryzhkov, S.I. Gordeev, T.F. Bogatova, Thermal Eng. 62, 796 (2015). DOI: 10.1134/S0040601515110075. [CrossRef] [Google Scholar]
  22. A.M. Kler, A.Yu. Marinchenko, Yu.M. Potanina, Bull. Tomsk Polytech. Univ. Geo Assets Eng. 329, 26 2019. DOI: 10.18799/24131830/2019/3/159 [Google Scholar]
  23. I.G. Donskoy, V.A. Shamansky, A.N. Kozlov, D.A. Svishchev, Combust. Theor. Model 21, 529 (2017). DOI: 10.1080/13647830.2016.1259505 [CrossRef] [Google Scholar]
  24. I.G. Donskoi, Solid Fuel Chem. 50, 191 (2016). DOI: 10.3103/S0361521916030034 [CrossRef] [Google Scholar]
  25. D.A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics (Princeton Univ. Press, 2015). [Google Scholar]
  26. B.J. McBride, M.J. Zehe, S. Gordon, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species (NASA\TP-2002-211556) (Glenn Research Center, Cleveland, 2002) [Google Scholar]
  27. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, M.G. Mayer, Molecular theory of gases and liquids (Wiley, New York, 1954). [Google Scholar]
  28. A.V. Messerle, V.E. Messerle, A.B. Ustimenko, High Temp. 55, 352 (2017). DOI: 10.1134/S0018151X17030142 [CrossRef] [Google Scholar]
  29. B.M. Kaganovich, S.P. Filippov, A.V. Keiko, V.A. Shamanskii, Thermal Eng. 58, 143 (2011). DOI: 10.1134/S0040601511020054 [CrossRef] [Google Scholar]
  30. T. Maffei, R. Khatami, S. Perucci, T. Faravelli, E. Ranzi, Y.A. Levendis, Comb. Flame 160, 2559 (2013). DOI: 10.1016/j.combustflame.2013.06.002 [CrossRef] [Google Scholar]
  31. H. Watanabe, K. Tanno, H. Umetsu, S. Umemoto, Fuel 142, 250 (2015). DOI: 10.1016/j.fuel.2014.11.012 [CrossRef] [Google Scholar]
  32. M.J.Prins, K.J. Ptasinski, F.J.J.G. Janssen, Energy 32, 1248 (2007). DOI: 10.1016/j.energy.2006.07.017 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.