Open Access
Issue |
E3S Web Conf.
Volume 212, 2020
2020 International Conference on Building Energy Conservation, Thermal Safety and Environmental Pollution Control (ICBTE 2020)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 10 | |
Section | Construction | |
DOI | https://doi.org/10.1051/e3sconf/202021202002 | |
Published online | 26 November 2020 |
- V.F. Stepanova, A.Yu. Stepanov, E.P. Zhirkov. Composite polymer reinforcement. Moscow: Bumazhnik, 2013. – 200 p. [Google Scholar]
- V.F. Stepanova, D.A. Ilyin, A.V. Buchkin. Hybrid composite reinforcement with increased modulus of elasticity. Natural and technical sciences, 2014, No. 9-10, p. 435-437 [Google Scholar]
- N. P. Frolov. Fiberglass reinforcement and fiberglass concrete structures. Moscow.: Stroyizdat, 1980.– 104 p. [Google Scholar]
- Ya.A. Pronozin, V.F. Bai, Yu.V. Zazulya, R.V. Melnikov. Application of nonmetallic materials as the main reinforcement of concrete bending elements. // Industrial and civil construction. 2009. No. 7. – S. 60–61. [Google Scholar]
- M.Yu. Oshchepkov. Union of Science and Production in the Belarusian Composites Industry // Composite World-2018. -№2, pp. 34–41. [Google Scholar]
- E. Ya. Sadin. Anchoring in concrete of fiberglass reinforcement produced in the Republic of Belarus // Architecture and construction, 2016-№3, p.68-71 [Google Scholar]
- E. Ya. Sadin. Estimation of anchoring in concrete of fiberglass reinforcement produced in the Republic of Belarus // Science and technology, T. 15, No. 4., 2016. – РP. 308–314. [Google Scholar]
- V.G. Barsukov, A.R. Volik, A.A. Maruk. Influence of reinforcement made of composite materials on the position of the neutral layer during bending of asymmetrically reinforced concrete beams // Bulletin of the Yanka Kupala Grodno State University. Series 6. Technique, Volume 9 No. 1, 2019. – Р P. 117–125. [Google Scholar]
- A.R. Volik, S.A. Sazon, K.Yu. Churilo. Peculiarities of tensile tests of composite reinforcement // Bulletin of the Yanka Kupala Grodno State University. Series 6Technique, Volume 10, No. 1, 2020. – РP. 110–118. [Google Scholar]
- V.V. Taletsky. Increasing the elastic modulus of fiberglass reinforcement // Issues of introducing design norms and standards of the European Union in the field of construction. Materials of the international scientific and methodological seminar, Minsk, BNTU, 22-23.05.2013. p. 130-136 [Google Scholar]
- Y. Qiu, P. Schwartz (1993) Micromechanical behavior of Kevlar-149 / S-glass hybrid seven-fiber micro composites I: tensile strength of the hybrid composite. Compos Sci. Technol. 24: РР. 19–32. [Google Scholar]
- Yihua Cui, Moe M. S. Cheung, Bahman Noruziaan, Stephen Lee, Jie Tao Development of ductile composite reinforcement bars for concrete structures // Materials and Structures (2008) 41: РР. 1509–1518. [CrossRef] [Google Scholar]
- F. Matthews. Composite Materials: Mechanics and Technology. M.: Technosphere, 2004. – 406 p. [Google Scholar]
- O. Chaallal, B. Benmokrane. (1996) Fiber-reinforced plastic rebars for concrete applications. Composites B 27 (B): РР. 245–252. [CrossRef] [Google Scholar]
- Lither land KL, Oakley DR, Proctor BA (1981) The use of accelerated aging procedures to predict the long term strength of GRC composites. Cement Concrete Res 11: РР. 455–466. [CrossRef] [Google Scholar]
- F. Micelli, A. Nanni (2004) Durability of FRP rods for concrete structures. Constr. Build Mater 18: РР. 491–503. [CrossRef] [Google Scholar]
- M.G. Bader, P.W. Manders (1981) The strength of hybrid glass / carbon fiber composites, part 1: failure strain enhancement and failure mode. J Mater Sci 16: РР. 2233–2245. [CrossRef] [Google Scholar]
- C.E. Bakis, A. Nanni, J.A. Terosky (2001) Self-monitoring, pseudo-ductile, hybrid FRP reinforcement rods for concrete applications. Compos SciTechnol 61: РР. 815–823. [CrossRef] [Google Scholar]
- A.R. Bunsell, B. Harris (1974) Hybrid carbon and glass fiber composites. Composites 5: РР. 157–164. [CrossRef] [Google Scholar]
- G. Kretsis (1987) A review of the tensile, compressive, flexural, and shear properties of hybrid fiber-reinforced plastics. Composites 18: РР. 13–23. [CrossRef] [Google Scholar]
- A. Nanni A, Nenniger JS, Ash KD, Liu J (1997) Experimental bond behavior of hybrid rods for concrete reinforcement. StructEngMech 5 (4): РР. 339–353. [Google Scholar]
- A. Nanni, J. Liu (1997) Modeling of bond behavior of hybrid rods for concrete reinforcement. Struct. Eng. Work 5 (4): РР. 355–368. [Google Scholar]
- V.V. Tur. Reinforced Concrete Structure. Basis of Design. / V.V. Tur, V.S. Semianiuk, A.V. Tur Brest, BrSTU Publishing House, 2018. – 402 p. [Google Scholar]
- V.P. Stavrov. Mechanics of Composite Materials – Minsk: BSTU, 1996. – 165 р. [Google Scholar]
- V.M. Kenko. Nonmetallic materials and methods of their processing. – Minsk .: Design PRO, 1998. – 240 р. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.