Open Access
Issue
E3S Web Conf.
Volume 212, 2020
2020 International Conference on Building Energy Conservation, Thermal Safety and Environmental Pollution Control (ICBTE 2020)
Article Number 02004
Number of page(s) 10
Section Construction
DOI https://doi.org/10.1051/e3sconf/202021202004
Published online 26 November 2020
  1. Yuan HW, Yin HL, Huang Y, Qian S, Xie ZW, Su QK, Qin Q. Study on the pollution characteristic of VOCs in ambient air of Chengdu. Adv Mater Res. 2012; 610-613: 1889-1894 [CrossRef] [Google Scholar]
  2. Zhang YL, Yang WQ, Simpson I, Huang XY, Yu JZ, Huang ZH, Wang ZY, Zhang Z, Liu D, Huang ZZ, Wang YJ, Pei CL, Shao M, Blake DR, Zheng JY, Huang ZJ, Wang XM. Decadal changes in emissions of volatile organic compounds (VOCs) from on-road vehicles with intensified automobile pollution control: Case study in a busy urban tunnel in south. China Environ Pollut. 2018; 233: 806-81 [CrossRef] [Google Scholar]
  3. Janke K, Propper C, Henderson J. Do current levels of air pollution kill? The impact of air pollution on population mortality in England. Health Econ. 2009; 18: 1031-1055 [CrossRef] [PubMed] [Google Scholar]
  4. Li MN, Zhang HZ, Zhang SZ, Ma J, Jia WK. Research progress in detection methods of volatile organic compounds in the environment. Chinese Journal of Analysis Laboratory. 2018; 37: 730-739 (in Chinese) [Google Scholar]
  5. Sha W, Ni S, Zheng C. Development of cataluminescence sensor system for benzene and toluene determination. Sensor Actuat B-Chem. 2015; 209: 297-305 [CrossRef] [Google Scholar]
  6. Yu KL, Hua JX, Li XH, Zhang LC, Lv Y. Camellia-like NiO: A novel cataluminescence sensing material for H2S. Sensor Actuat B-Chem. 2019; 288: 243–250 [CrossRef] [Google Scholar]
  7. Tang J, Song HJ, Zeng BR, Zhang LC, Lv Y. Cataluminescence gas sensor for ketones based on nanosized NaYF4:Er. Sensor Actuat B-Chem. 2016; 222: 300-306 [CrossRef] [Google Scholar]
  8. Jiao X, Zhang LC, Lv Y, Su Y. A new alcohols sensor based on cataluminescence on nano-CdS. Sensor Actuat B-Chem. 2013; 186: 750-754 [CrossRef] [Google Scholar]
  9. Li B, Liu JF, Shi GL, Liu JH. A research on detection and identification of volatile organic compounds utilizing cataluminescence-based sensor array. Sensor Actuat B-Chem 2013; 177: 1167-1172 [CrossRef] [Google Scholar]
  10. Marcello M, Sara G, Flavio DP, Corrado DN, Sinazo Q, Emmanuel I, Paola P, Dario C. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs). Front Chem. 2018; 6: 105 [CrossRef] [Google Scholar]
  11. Zhang RK, Cao XA, Liu YH, Chang XY. Development of a simple cataluminescence sensor system for detecting and discriminating volatile organic compounds at different concentrations. Anal Chem. 2013; 85: 3802-3806 [CrossRef] [PubMed] [Google Scholar]
  12. Luo M, Shao K, Long Z, Wang LX. A paper-based plasma-assisted cataluminescence sensor for ethylene detection. Sensor Actuat B-Chem. 2017; 240: 132-141 [CrossRef] [Google Scholar]
  13. Tachachartvanich P, Sangsuwan R, Ruiz HS, Sanchez SS, Durkin KA, Zhang LP, Smith MT. Assessment of the endocrine-disrupting effects of trichloroethylene and its metabolites using in vitro and in silico approaches. Environ Sci Tec. 2018; 52: 1542-1550 [CrossRef] [Google Scholar]
  14. Zhang C, Yu Y, Yu JF, Li BD, Zhou CF, Yang XD, Wang X, Wu CH, Shen T, Zhu QX. Viral mimic polyinosine-polycytidylic acid potentiates liver injury in trichloroethylene-sensitized mice-Viral-chemical interaction as a novel mechanism. Ecotox Environ Safe. 2018; 155: 101-108 [CrossRef] [Google Scholar]
  15. Xia H, Zhou RH, Zheng CB, Wu P, Tian YF, Hou XD. Solution-free, in situ preparation of nano/micro CuO/ZnO in dielectric barrier discharge for sensitive cataluminescence sensing of acetic acid. Analyst. 2013; 138: 3687-3691 [CrossRef] [PubMed] [Google Scholar]
  16. Xu HL, Li QY, Zhang LC, Zeng BR, Deng DY, Lv Y. Transient cataluminescence on flowerlike MgO for discrimination and detection of volatile organic compounds. Anal Chem. 2016; 88: 8137-8144 [CrossRef] [PubMed] [Google Scholar]
  17. Yang T, Xia DG, Chen G, Chen Y. Influence of the surfactant and temperature on the morphology and physico-chemical properties of hydrothermally synthesized composite oxide BiVO4. Mater Chem Phys. 2009; 114: 69-72 [CrossRef] [Google Scholar]
  18. Sabet M, Jahangiri H. The effects of surfactant on the structure of ZnCr2O4 dendrimer like nanostructures used in degradation of eriochrome black T. Mater Res Express. 2017; 5 [Google Scholar]
  19. Xu HL, Li QY, Zhang LC, Zeng BR, Deng DY, Lv Y. Transient Cataluminescence on Flowerlike MgO for Discrimination and Detection of Volatile Organic Compounds. Anal Chem. 2016; 88: 8137-8144 [CrossRef] [PubMed] [Google Scholar]
  20. Li F, Xia L, Liu XD, Yang QL, Cheng KJ, Huang QJ. Preparation and photocatalytic properties visible-light-driven ZnO nanostructures. Journal of Shenyang University. 2017; 29: 179-183 (in Chinese) [Google Scholar]
  21. Wu ZF, Li SJ. Infrared spectral characteristics of zinc hydroxide and zinc oxide. Spectral Laboratory. 2012; 29: 2172-2175 (in Chinese) [Google Scholar]
  22. Liu YH, Tang F, Kang CJ, Cao XA. Detection of hydrogen sulphide using cataluminescence sensors based on alkaline-earth metal salts. Luminescence. 2012; 27: 274-278 [CrossRef] [PubMed] [Google Scholar]
  23. Xu YS, Zheng W, Liu XH, Zhang LQ, Zheng LL, Yang C, Pinna N, Zhang J. Platinum single atoms on tin oxide ultrathin film for extremely sensitive gas detection. Mater Horiz. 2020; 7: 1519-1527 [CrossRef] [Google Scholar]
  24. Xu YH, Zheng LL, Yang C, Zheng W, Liu XH, Zhang J. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl Mater Inter. 2020; 12: 20704-20713 [CrossRef] [Google Scholar]
  25. Zheng W, Xu YS, Zheng LL, Yang C, Pinna N, Liu XH, Zhang J.. MoS2 van der waals p-n junctions enabling highly selective room-temperature NO2 sensor. Adv Funct Mater. 2020; 30: 2000435 [CrossRef] [Google Scholar]
  26. Wang NJ, Cao XA, He RW, Liu YH, Huang YJ. A cataluminescence-based sensor for detecting benzene, toluene and xylene vapors utilizing the catalytic reduction on the surface of nanosized Al2O3/Pt. Adv Mater Res. 2013; 663: 335-342 [CrossRef] [Google Scholar]
  27. Zheng JZ, Zhang WX, Cao J, Su XH, Li SF, Hu SR, Li SX, Rao ZM. A novel and highly sensitive gaseous n-hexane sensor based on thermal desorption/cataluminescence. RSC Adv. 2014; 4: 21644-21649 [CrossRef] [Google Scholar]
  28. Zhang RK, Cao XA, Liu YH, Chang XY. A new method for identifying compounds by luminescent response profiles on a cataluminescence based sensor. Anal Chem. 2011; 83: 8975-8983 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.