Open Access
E3S Web Conf.
Volume 213, 2020
2nd International Conference on Applied Chemistry and Industrial Catalysis (ACIC 2020)
Article Number 01024
Number of page(s) 4
Section Industrial Catalysis and Chemical Substance R&D and Application
Published online 01 December 2020
  1. (a) Swiegers G F, Malefestse T J. (2000) New SelfAssembled Structural Motifs in Coordination Chemistry. Chem. Rev., 100:3483-3538. (a) Fromm K M. (2008) Coordination Polymer Networks with S-block Metal Ions. Coord. Chem. Rev., 252: 856885. [Google Scholar]
  2. (a) Kaye S S, Daily A, Yaghi O M, Long J R. (2007) Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1, 4benzenedicarboxylate)3(MOF-5). J.Am.Chem.Soc., 139:14176-14177. (b) Horike S, Bureekaew S, Kitagawa S.(2008) Coordination Pillared-layer Type Compounds Having Pore Surface Functionalization by Anionic Sulfonate Groups. Chem. Commun, 471-473. [Google Scholar]
  3. (a) Inoue K, Imai H, Ghalsasi P S, et al. (2001) A Three-Dimensional Ferrimagnet with a High Magnetic Temperature (Tc)of 53K Based on a Chiral Molecule. Angew. Chem. Int.Ed. 40: 4242-4245. (b) Shimomura S, Matsuda R, Tsujino T, et al. (2006) TCNQ DianionBased Coordination Polymer Whose Open Framework Shows Charge-Transfer Type Guest Inclusion. J.Am.Chem.Soc., 128:16416-16417. [CrossRef] [Google Scholar]
  4. Ma L, Lin W.(2008) Chirality-Controlled and Solvent-Templated Catenation Isomerism in MetalOrganic Frameworks. J.Am.Chem.Soc. 130: 13834-13835. [CrossRef] [Google Scholar]
  5. Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J, Kim K.(2000). A Homochiral Metal-Organic Porous Material for Enantioselective Separation and Catalysis. Nature. 404:982-986. [CrossRef] [PubMed] [Google Scholar]
  6. Khavasi H R, Sadegh B M, Temperature-Dependent Supramolecular Motif in Coordination Compounds. (2010) Inorg. Chem. 49: 5356-5358. [CrossRef] [PubMed] [Google Scholar]
  7. F. Yu, X-J. Kong, Y-Y. Zheng, Y. P. Ren, L.-S. Long, R. B. Huang, L.-S. Zheng. pH-dependent assembly of 0D to 3D Keggin-based coordination polymers: Structure and catalytic properties. (2009) Dalton Trans. 9503-9509. [CrossRef] [PubMed] [Google Scholar]
  8. Huang W, Jin, Y C, Wu D Y, Wu G H. AnionTunable Configuration Isomerism and Magnetic Coupling in a Tetranuclear Discrete, OneDimensional(1D) Chiral Chain and 1D-Decker Copper(II) Complexes of a Carbohydrazine Dereivative. (2014) Inorg. Chem. 53: 73-79. [CrossRef] [PubMed] [Google Scholar]
  9. (a) Hausmann J, Jameson G B, Brooker S. Control of molecular architecture by the degree of deprotonation : self-assembled diand tetranuclear copper(II) complexes of N, N-bis(2-pyridylmethyl)pyrazine-2, 3-dicarboxamide. (2003) Chem. Commun. 2992-2993. (b)Hausmann J, Brooker S.Control of molecular architecture by use of the appropriate ligand isomer: a mononuclear “cornertype” versus a tetranuclear[2x2] grid-type cobalt(III) complex. (2004) Chem. Commun. 1530-1531. (c)Klingele J, Boas J F, Pilbrow J R, Moubaraki B, Murray K S, Berry K J, Hunter K A, Jameson G B, Boyd P D, Brooker S. A [2x2] nickel(II) grid and a copper(II) square result from differing binding modes of a pyrazinebased diamide ligand. (2007) Dalton. Trans. 633-645. [Google Scholar]
  10. Cockriel D L, McClain J M, Patel K C, Ullon R, Hubin T J. The design and synthesis of pyrazine amide ligands for the “tiles” approach to molecular weaving with octahedral metal ions (2008) Inorg. Chem. Commun, 11:1-4. [CrossRef] [Google Scholar]
  11. Khavasi H R, Sasan K, Pirouzmand M, Ebrahimi S N. Highly Efficient Isobutyraldehyde-Mediated Exoxidation of Cyclic Alkenes with Dioxygen Catalyzed by a Novel Dimeric Maganese (II) Complex Containing an Easy-to-Prepare Flexible Carboxamide Ligand. (2009) Inorg.Chem. 48, 5593-5595. [CrossRef] [Google Scholar]
  12. Houser R P, Wang Z D, Powell D R, Hubin T J. Copper(I) and copper(II) complexes with pyrazinecontaining pyridylalkylamide ligands N-(pyridin-2ylmethyl)pyrazine-2-carboxamide and N-(2-pyridin-2yl)ethyl)pyrazine-2-carboxamide Journal of Coordination Chemistry, 2013, 66:4080-4092. [Google Scholar]
  13. Sheldrick G M, SHELXTL NT, version 5.1, Program for Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997. [Google Scholar]
  14. Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. A complete structure solution, refinement and analysis program. (2009) J. Appl. Crystallogr. 42:339-341. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.