Open Access
E3S Web of Conf.
Volume 215, 2020
International Scientific Conference on Biotechnology and Food Technology (BFT-2020)
Article Number 01003
Number of page(s) 11
Section Modern Biotechnology in Food Safety and Quality
Published online 02 December 2020
  1. L.V. Garibova, S.N. Lekomtseva, Bases of Mycology: Morphology and systematics of fungi and fungi-like organisms (Textbook, T-scientific publications in KMK, Moscow, 2005) [Google Scholar]
  2. J.G.H. Wessels, O.M.H. de Vries, S.A. Ásgeirsdóttir, F.H.J. Schuren, Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum commune, Plant Cell 3, 793–799 (1991) [CrossRef] [Google Scholar]
  3. A.R. Cox, D.L. Aldred, A.B. Russell, Exceptional stability of food foams using class II hydrophobin HFBII, Food Hydrocolloids 23 (2), 366–376 (2009) [CrossRef] [Google Scholar]
  4. S.O. Lumsdon, J. Green, B. Stieglitz, Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces, Colloids and Surfaces B: Biointerfaces 44, 172–178 (2005) [CrossRef] [Google Scholar]
  5. F.L. Tchuenbou-Magaia, I.T. Norton, P.W. Cox, Hydrophobins stabilised air-filled emulsions for the food industry, Food Hydrocolloids 23, 1877–1885 (2009) [CrossRef] [Google Scholar]
  6. M. Sunde, A.H. Kwan, M.D. Templeton, R.E. Beever, J.P. Mackay, Structural analysis of hydrophobins, Micron 39 (7), 773-784 (2008) [CrossRef] [PubMed] [Google Scholar]
  7. O.M.H. de Vries, M.P. Fekkes, H.A.B. Wösten, J.G.H. Wessels, Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi, Arch. Microbiol. 159, 330–335 (1993) [CrossRef] [Google Scholar]
  8. J.G.H. Wessels, Hydrophobins, proteins that change the nature of the fungal surface, Adv. Microbial Physiol. 38, 1–45 (1997) [Google Scholar]
  9. M. Amaha, K. Kitabatake, A. Nakagava, J. Yoshida, T. Harada, Gushing inducers produced by some moulds strans, In: Proc Eur Brew Conv 14th Congress, Salzburg, 381–398 (1973) [Google Scholar]
  10. M.I. Janssen, M.B. van Leeuwen, T.G. van Kooten, J. de Vries, L. Dijkhuizen, H.A. Wösten, Promotion of fibroblast activity by coating with hydrophobins in the b-sheet end state, Biomaterials 25, 2731–2739 (2004) [CrossRef] [PubMed] [Google Scholar]
  11. M.I. Janssen, M.B. van Leeuwen, K. Scholtmeijer, T.G. van Kooten, L. Dijkhuizen, H.A. Wösten, Coating with genetic engineered hydrophobin promotes growth of fibroblasts on a hydrophobic solid, Biomaterials 23, 4847–4854 (2002) [CrossRef] [PubMed] [Google Scholar]
  12. K. Scholtmeijer, M.I. Janssen, B. Gerssen, M.L. de Vocht, B.M. van Leeuwen, T.G. van Kooten, H.A. Wösten, J.G. Wessels, Surface modifications created by using engineered hydrophobins, Appl. Environ. Microbiol. 68, 1367–1373 (2002) [CrossRef] [Google Scholar]
  13. Y. Corvis, A. Walcarius, R. Rink, N.T. Mrabet, E. Rogalska, Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers, Anal. Chem. 77, 1622-1630 (2005) [CrossRef] [PubMed] [Google Scholar]
  14. Z.X. Zhao, M.Q. Qiao, F. Yin, B. Shao, B.Y. Wu, Y.Y. Wang, X.S. Wang, X. Qin, S. Li, Q. Chen, Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization, Biosens. Bioelectron. 22, 3021-3027 (2007) [CrossRef] [PubMed] [Google Scholar]
  15. A.J. Green, K.A. Littlejohn, P. Hooley, P.W. Cox, Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients 18 (4), 292–30 (2013) [Google Scholar]
  16. M. Shamtsyan, T. Dmitriyeva, B. Kolesnikov, N. Denisova, Novel milk-clotting enzyme produced by Coprinus lagopides basidial mushroom, LWT - Food Science and Technology 58 (2), 343-347 (2014) [CrossRef] [Google Scholar]
  17. M. Shamtsyan, Potential to develop functional food products from mushroom bioactive compounds, Journal of Hygienic Engineering and Design 15, 51-59 (2016) [Google Scholar]
  18. N.R. Draper, H. Smith, Applied Regression Analysis, 3rd ed. Wiley-Interscience, New York (1998) [Google Scholar]
  19. A.J. Richard, W.W. Dean, Applied multivariate statistical analysis (Prentice-Hall, London, 2002) [Google Scholar]
  20. L. Wang, D. Ridgway, T. Gu, M. Moo-Young, Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations, Biotechnology Advances 23, 115 – 129 (2005) [CrossRef] [PubMed] [Google Scholar]
  21. Practicum on Microbiology, ed. N.S. Yegoeova, (Moscow state university, Moscow, 1976) [Google Scholar]
  22. O.M.H. de Vries, M.P. Fekkes, H.A.B. Wiisten, J.G.H. Wessels, Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi, Arch Microbiol. 159, 330-335 (1992) [Google Scholar]
  23. Vries, S. Moore, C. Arntz, J.G.H. Wessels, P. Tudzynski, Identification and characterization of a tri-partite hydrophobin from Claviceps fusiformis, A novel type of class II hydrophobin, Eur. J. Biochem, 262, 377-385 (1999) [CrossRef] [PubMed] [Google Scholar]
  24. A. Armenante, Pleurotus ostreatus hydrophobins: surface active proteins. Dottorato in Scienze Biotecnologiche – XXI ciclo, Indirizzo Biotecnologie Industriali, Università di Napoli Federico II (2008) [Google Scholar]
  25. S.A. Ásgeirsdóttir, J.R. Halsall, L.A. Casselton, Expression of Two Closely Linked Hydrophobin Genes of Coprinus cinereus Is Monokaryon-Specific and Down-Regulated by the oid-1 Mutation, Fungal Genetics and Biology. 22, 54–63 (1997) [CrossRef] [Google Scholar]
  26. S. Askolin, Characterisation of Trichoderma reesei hydrophobins HFBI and HFBII. DSc thesis Helsinki University of Technology (2006) [Google Scholar]
  27. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent, The Journal of Biological Chemistry 193, 265-275 (1952) [Google Scholar]
  28. U.K. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature 227, 680-685 (1970) [CrossRef] [PubMed] [Google Scholar]
  29. M. Kawai, N. Mukai, Studies of milk-clotting enzymes produced by Basidiomycetes, Part I. Screening test of basidiomycetes for the production of mi1k-clotting enzymes, Agricultural and Biological Chemistry 34(2), 159-163 (1970) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.