Open Access
E3S Web of Conf.
Volume 215, 2020
International Scientific Conference on Biotechnology and Food Technology (BFT-2020)
Article Number 01004
Number of page(s) 11
Section Modern Biotechnology in Food Safety and Quality
Published online 02 December 2020
  1. W.A. Awad, K. Ghareeb, J. Böhm, J. Zentek, Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation, Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment 27, 510-520 (2010) [Google Scholar]
  2. J.P. Jouany, Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds, Animal Feed Science and Technology 137, 342-362 (2007) [CrossRef] [Google Scholar]
  3. I. Hahn, R. Krska, F. Berthiller, Pre- and post-harvest strategies for the prevention, inactivation and detoxification of mycotoxins in food and feed (2015) [Google Scholar]
  4. G.P. Munkvold, Cultural and Genetic Approaches to Managing Mycotoxins in Maize, Annual Review of Phytopathology (2003) [Google Scholar]
  5. A.W. Schaafsm, L. Tamburic-Ilinic, J.D. Miller, D.C. Hooker, Agronomic considerations for reducing deoxynivalenol in wheat grain, Canadian Journal of Plant Pathology 23, 279-285 (2001) [CrossRef] [Google Scholar]
  6. A. Teich, K. Nelson, Survey of Fusarium head blight and possible effects of cultural practices in wheat fields in Lambton County in 1983, Canadian Plant Disease Survey 64, 11-13 (1984) [Google Scholar]
  7. Z. Slavić, T. Dudaš, M. Loc, M. Grahovac, D. Budakov, I. Jajić, S. Krstović, T. Barošević, R. Krska, M. Sulyok, V. Stojšin, M. Petreš, A. Stankov, J. Vukotić, F. Bagi, Biological Control of Aflatoxin in Maize Grown in Serbia, Toxins 12(3), 162 (2020) DOI: 10.3390/toxins12030162 [CrossRef] [Google Scholar]
  8. S.P. Swanson, C. Helaszek, W.B. Buck et al., The role of intestinal microflora in the metabolism of tricho-thecene mycotoxins, Food Chem. Toxicol. 26, 823-9 (1988) DOI: 10.1016/0278-6915(88)90021-X [CrossRef] [PubMed] [Google Scholar]
  9. P. Marten, K. Smalla, G. Berg, Genotypic and phe-notypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis, J. Appl. Microbiol. 89, 463-71 (2000) DOI: 10.1046/j.1365-2672.2000.01136.x [CrossRef] [Google Scholar]
  10. S. Siddiqui, Z.A. Siddiqui, I. Ahmad, Evaluation of fluorescent pseudomonads and Bacillus isolates for the biocontrol of a wilt disease complex of pi-geonpea, W. J. Microb. Biot. 21, 729-32 (2005) DOI: 10.1007/s11274-004-4799-z [CrossRef] [Google Scholar]
  11. C.A. Stockwell, G.C. Bergstrom, W.C. da Luz, Bio-logical control of Fusarium head blight with Bacillus subtilis TrigoCor 1448. In: “National Fusarium Head Blight Forum Proceedings” (University of Kentucky, Lexington, KY. 91-5, 2001) [Google Scholar]
  12. N.I. Khan, D.A. Schisler, M.J. Boehm et al., Field test-ing of antagonists of Fusarium head blight incited by Gibberella zeae, Biol. Control. 29, 245-55 (2004) DOI: 10.1016/S1049-9644(03)00157-9 [CrossRef] [Google Scholar]
  13. D.A. Schisler, N.I. Khan, M.J. Boehm, P.J. Slinger, Greenhouse and field evaluation of biologi-cal control of Fusarium head blight on durum wheat, Plant Dis. 200, 86, 1350-6. DOI: 10.1094/PDIS.2002.86.12.1350 [Google Scholar]
  14. N.L.Perondi, W.C. da Luz, R. Thomas, Controle microbiologico da giberela do trigo, Fitopatol. Brasiliera 2, 243-9 (1996) [Google Scholar]
  15. C.A. Stockwell, W.C. Luz, G.C. Bergstrom, Bio-control of wheat scab with microbial antagonists, Phytopathol. 8, 94 (1997) [Google Scholar]
  16. Y. Luo, B. Bleakley, Biological control of Fusarium head blight (FHB) of wheat by Bacillus strains. In: “Proceedings of the 1999 National Fusarium Head Blight Forum” (1999) [Google Scholar]
  17. W.G.D. Fernando, Is there potential for biological control of Fusarium? In: “Proceedings of the 2nd Canadian Workshop on Fusarium Head Blight” (2001) [Google Scholar]
  18. J. Nourozian, H.R. Etebarian, G. Khodakaramian, Biological control of Fusarium graminearum on wheat by antagonistic bacteria, Songklanakarin J. Sci. Technol. 28(1), 29-38 (2006) [Google Scholar]
  19. D. Pan, A. Mionetto, S. Tiscornia, L. Bettucci, Endo-phytic bacteria from wheat grain as bio-control agents of Fusarium graminearum and deoxynivalenol production in wheat, Mycotox. Res. 31(3), 137-43 (2015) DOI: 10.1007/s12550-015-0224-8 [CrossRef] [Google Scholar]
  20. M. Kovač, D. Šubarić, M. Bulaić, T. Kovač, B. Šarkanj, Yesterday masked, today modified; what do mycotoxins bring next? Archives of Industrial Hygiene and Toxicology 69, 196-214 (2018) DOI: 10.2478/aiht-2018-69-3108 [CrossRef] [Google Scholar]
  21. T. Kovač, B. Šarkanj, B. Crevar, M. Kovač, A. Lončarić, I. Strelec, C.N. Ezekiel, M. Sulyok, R. Krska, Aspergillus flavus NRRL 3251 growth, oxidative status, and aflatoxins production ability in vitro under different illumination regimes, Toxins 10(52), 528 (2018) DOI: 10.3390/toxins10120528 [CrossRef] [Google Scholar]
  22. J. Petrić, B. Šarkanj, I. Mujić, A. Mujić, M. Sulyok, R. Krska, D. Šubarić, S. Jokić, Effect of pretreatments on mycotoxin profiles and levels in dried figs, Archives of Industrial Hygiene and Toxicology 69, 328-333 (2018) DOI: 10.2478/aiht-2018-69-3147 [CrossRef] [Google Scholar]
  23. K. Mastanjević, B. Šarkanj, K. Mastanjević, B. Šantek, V. Krstanović, Fusarium culmorum mycotoxin transfer from wheat to malting and brewing products and by-products, World mycotoxin journal 12(1), 55-66 (2018) DOI: 10.3920/WMJ2018.2340 [CrossRef] [Google Scholar]
  24. K. Mastanjević, J. Lukinac, M. Jukić, B. Šarkanj, V. Krstanović, K. Mastanjević, Multi-(myco)toxins in malting and brewing by-products, Toxins 11, 30 (2019) DOI: 10.3390/toxins11010030 [CrossRef] [Google Scholar]
  25. V. Spanic, Z. Zdunic, G. Drezner, B. Sarkanj, The pressure of Fusarium disease and its relation with mycotoxins in the wheat grain and malt, Toxins 11, 198 (2019) DOI: 10.3390/toxins11040198 [CrossRef] [Google Scholar]
  26. W. Qiuping, B. Šarkanj, J. Jurasovic, Y. Chisti, M. Sulyok, J. Gong, S. Sirisansaneeyakul, D. Komes, Evaluation of microbial toxins, trace elements and sensory properties of a high-theabrownins instant Pu-erh tea produced using Aspergillus thbingensis via submerged fermentation, Int. J. Food Sci. Tech. 54, 1541-1549 (2019) DOI: 10.1111/ijfs.14017 [CrossRef] [Google Scholar]
  27. K. Mastanjević, B. Šarkanj, R. Krska, M. Sulyok, B. Warth, K. Mastanjević, B. Šantek, B. Krstanović, From malt to wheat beer: A comprehensive multi-toxin screening, transfer assessment and its influence on basic fermentation parameters, Food Chem. 254, 115-121 (2018) DOI: 10.1016/j.foodchem.2018.02.005 [CrossRef] [PubMed] [Google Scholar]
  28. K. Habschied, B. Šarkanj, T. Klapec, V. Krstanović, Distribution of zearalenone in malted barley fractions dependent on Fusarium graminearum growing conditions, Food Chem. 129, 329-332 (2011) DOI: 10.1016/j.foodchem.2011.04.064 [CrossRef] [PubMed] [Google Scholar]
  29. B. Šarkanj, M. Molnar, M. Čačić, L. Gille, 4-methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution whit thiosemicarbazide and thiazolidinone moieties, Food Chem. 139, 488-495 (2013) DOI: 10.1016/j.foodchem.2013.01.027 [CrossRef] [PubMed] [Google Scholar]
  30. M. Molnar, V. Pavić, B. Šarkanj, M. Čačić, D. Vuković, J. Klenkar, Mono-and bis-dipicolinic acid heterocyclic derivatives – thiosemicarbazides, triazoles, oxadiazoles and thiazolidinones as antifungal and antioxidant agents, Heterocycl. Commun. 23(1), 35-42 (2017) DOI: 10.1515/hc-2016-0078 [CrossRef] [Google Scholar]
  31. M. Čačić, V. Pavić, M. Molnar, B. Šarkanj, E. Has-Schon, Design and synthesis of some new 1,3,4-thiadiazines with coumarin moieties and their antioxidative and antifungal activity, Molecules 19, 1163-1177 (2014) doi:10.3390/molecules19011163 [CrossRef] [PubMed] [Google Scholar]
  32. I. Jerković, M. Kranjac, Z. Marijanović, B. Šarkanj, A.M. Cikoš, K. Aladić, S. Pedisić, S. Jokić, Chemical diversity of Codium bursa (Olivi) C. Agardh headspace compounds, volatiles, fatty acids, and insight into its antifungal activity, Molecules 24, 842 (2019) DOI: 10.3390/molecules24050842 [CrossRef] [Google Scholar]
  33. A.M. Torres, M.L. Ramirez, M. Arroyo, S.N. Chulze, N. Magan, Potential use of antioxidants for control of growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on whole maize grain, Int. J. Food Microbiol. 83(3), 319-324 (2003) DOI: 10.1016/S0168-1605(02)00380-X [CrossRef] [PubMed] [Google Scholar]
  34. T. Kovač, B. Šarkanj, I. Borišev, A. Djordjevic, D. Jović, A. Lončarić, J. Babić, A. Jozinović, T. Krska, J. Gangl, C.N. Ezekiel, M. Sulyok, R. Krska, Fullerol C60(OH)24 nanoparticles affect secondary metabolite profile of important foodborne mycotoxigenic fungi in vitro, Toxins 12, 213 (2020) DOI: 10.3390/toxins12040213 [CrossRef] [Google Scholar]
  35. T. Kovač, I. Borišev, M. Kovač, A. Lončarić, F. Čačić Kenjerić, A. Djordjevic, I. Strelec, C.N. Ezekiel, M. Sulyok, R. Krska, B. Šarkanj, Impact of fullerol C60(OH)24 nanoparticles on the production of emerging toxins by Aspergillus flavus, Sci. Rep. 10, 725 (2020) DOI: 10.1038/s41598-020-57706-3 [CrossRef] [PubMed] [Google Scholar]
  36. T. Kovač, B. Šarkanj, T. Klapec, I. Borišev, M. Kovač, A. Nevistić, I. Strelec, Fullerol C60(OH)24 nanoparticles and mycotoxigenic fungi: a preliminary investigation into modulation of mycotoxin production, Environ. Sci. Pollut. Res. 24, 16674-16681 (2017) DOI: 10.1007/s11356-017-9214-z [Google Scholar]
  37. T. Kovač, B. Šarkanj, T. Klapec, I. Borišev, M. Kovač, A. Nevistić, I. Strelec, Antiaflatoxigenic effect of fullerene C60 nanoparticles at environmentally plausible concentrations, AMB Expr. 8, 14 (2018) DOI: 10.1186/s13568-018-0544-0 [CrossRef] [Google Scholar]
  38. E. Gracia-Cela, E. Kiaitsi, M. Sulyok, A. Medina, N. Magan, Fusarium graminearum in stored wheat: use of CO2 production to quantify dry matter losses and relate this to relative risk of zearalenone contamination under interacting environmental conditions, Toxins 10(2), 86 (2018) DOI: 10.3390/toxins10020086 [CrossRef] [Google Scholar]
  39. M.K. Gilbert, A. Medina, M.B. Mack, M.D. Lebar, A. Rodriguez, D. Bhatnagar, N. Magan, G. Obrian, G. Payne, Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of maize kernels, Toxins 10(1), 5 (2018) DOI: 10.3390/toxins10010005 [CrossRef] [Google Scholar]
  40. H.C. Zhai, S.B. Zhang, S.X. Huang, J.P. Cai, Prevention of toxigenic fungal growth in stored grains by carbon dioxide detection, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk. Assess. 32, 596-603 (2015) DOI: 10.1080/19440049.2014.968221 [CrossRef] [Google Scholar]
  41. T.W. Kensler, B.D. Roebuck, G.N. Woganm, J.D. Groopman, Aflatoxin: A 50-year odyssey of mechanistic and translational toxicology, Tox. Sci. 120(1), 28-48 (2011) DOI: 10.1093/toxsci/kfq283 [CrossRef] [Google Scholar]
  42. S. Biselli, C. Persin, M. Syben, Investigation of the distribution of deoxynivalenol and ochratoxin A contamination within a 26 t truckload of wheat kernels, Mycotox. Res. 24, 98-104 (2008) DOI: 10.1007/BF02985287 [CrossRef] [Google Scholar]
  43. T. Calado, A. Venancio, L. Abrunhosa, Irradiation for mold and mycotoxin control: A review, Compr. Rev. Food Sci. Food Saf. 13(5), 1049-1061 (2014) [CrossRef] [Google Scholar]
  44. V. Spanic, Z. Katanic, M. Sulyok, R. Krska, K. Puskas, G. Vida, G. Drezner, B. Šarkanj, Multiple fungal metabolites including mycotoxins in naturally infected and Fusarium – inoculated wheat sample, Microorganisms 8, 578 (2020) DOI: 10.3390/microorganisms8040578 [CrossRef] [Google Scholar]
  45. K. Habschied, R. Krska, M. Sulyok, B. Šarkanj, V. Krstanović, A. Lalić, G. Šimić, K. Mastanjević, Screening of various metabolites in six barley varieties grown under natural climatic conditions (2016-2018), Microorganisms 7, 532 (2019) DOI: 10.3390/microorganisms7110532 [CrossRef] [Google Scholar]
  46. V. Spanic, M. Viljevac Vuletic, D. Horvat, B. Sarkanj, G. Drezner, Z. Zdunic, Changes in antioxidant system during grain development of wheat (Triticum aestivum L.) and relationship with protein composition under FHB stress, Pathogens 9, 17 (2020) DOI: 10.3390/pathogens9010017 [CrossRef] [Google Scholar]
  47. H. Houissa, S. Lasram, M. Sulyok, B. Šarkanj, A. Fontana, C. Strub, R. Krska, S. Galindo, A. Ghorbel, Multimycotoxin LC-MS/MS analysis in pearl millet (Pennisetum glaucum) from Tunisia, Food Control 106, 106738 (2019) DOI: 10.1016/j.foodcont.2019.106738 [CrossRef] [Google Scholar]
  48. J.W. Dorner, Management and prevention of mycotoxins in peanuts, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk. Assess. 25(2), 203-208 (2008) DOI: 10.1080/02652030701658357 [CrossRef] [Google Scholar]
  49. M. Aoun, W. Stafstrom, P. Priest, J. Fuchs, G.L. Windham, W.P. Williams, R.J. Nelson, Low-cost grain sorting technologies to reduce mycotoxin contamination in maize and groundnut, Food Control 118, 107363 (2020) DOI: 10.1016/j.foodcont.2020.107363 [CrossRef] [PubMed] [Google Scholar]
  50. J. Park, D.H. Kim, J.Y. Moon, J.A. An, Y.W. Kim, S.H. Chung, C. Lee, Distribution Analysis of Twelve Mycotoxins in Corn and Corn-Derived Products by LC-MS/MS to Evaluate the Carry-Over Ratio during Wet-Milling, Toxins 10(3), 319 (2018) DOI: 10.3390/toxins10080319 [CrossRef] [Google Scholar]
  51. S. Schaarschmidt, C. Fauhl-Hassek, The fate of mycotoxins during the primary food processing of maize, Food Control 121, 107651 (2021) DOI: 10.1016/j.foodcont.2020.107651 [CrossRef] [Google Scholar]
  52. A. Huwig, S. Freimund, O. Käppeli, H. Dutler, Mycotoxin detoxication of animal feed by different adsorbents, Tox. Lett. 122(2), 179-188 (2001) DOI: 10.1016/S0378-4274(01)00360-5 [CrossRef] [Google Scholar]
  53. C.N. Ezekiel, M. Sulyok, I.M. Ogara, W.A. Abia, B. Warth, B. Šarkanj, P. Turner, R. Krska, Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria, Food Chem. Tox. 128, 171-179 (2019) DOI: 10.1016/j.fct.2019.04.002 [CrossRef] [Google Scholar]
  54. W.A. Abia, B. Warth, C.N. Ezekiel, B. Sarkanj, C.P. Turner, D. Marko, R. Krska, M. Sulyok, Uncommon toxic microbial metabolite patterns in traditionally home-processed maize dish (fufu) consumed in rural Cameroon, Food Chem. Tox. 107, 10-19 (2017) DOI: 10.1016/j.fct.2017.06.011 [CrossRef] [Google Scholar]
  55. C.A. Okeke, C.N. Ezekiel, M. Sulyok, O.R. Ogunremi, C.O. Ezeamagu, B. Šarkanj, B, Warth, R. Krska, Traditional processing impacts mycotoxin levels and nutritional value of ogi - A maize-based complementary food, Food Control. 86, 224-233 (2018) DOI: 10.1016/j.foodcont.2017.11.021 [CrossRef] [Google Scholar]
  56. S. Generotti, M. Cirlini, B. Šarkanj, M. Sulyok, F. Berthiller, C. Dall’Asta, M. Suman, Formulation and processing factors affecting trichotecene mycotoxins within industrial biscuid-making, Food Chem. 229, 597-603 (2017) DOI: 10.1016/j.foodchem.2017.02.115 [CrossRef] [PubMed] [Google Scholar]
  57. S. Schaarschmidt, C. Fauhl-Hassek, Mycotoxins during the Processes of Nixtamalization and Tortilla Production, Toxins 11(4), 227 (2019) DOI: 10.3390/toxins11040227 [CrossRef] [Google Scholar]
  58. D.L. Park, L.S. Lee, R.L. Price, A.E. Pohland, Review of the Decontamination of Aflatoxins by Ammoniation: Current Status and Regulation, J. Assoc. Off. Anal. Chem. 71(4), 685-703 (1988) DOI: 10.1093/jaoac/71.4.685 [PubMed] [Google Scholar]
  59. G. Kaushik, Effect of processing on mycotoxin content in grains, Crit Rev Food Sci Nutr. 55, 1672-1683 (2015) DOI: 10.1080/10408398.2012.701254 [CrossRef] [PubMed] [Google Scholar]
  60. J.P. Jouany, A. Yiannikouris, G. Bertin, The chemical bonds between mycotoxins and cell wall components of Saccharomyces cerevisiae have been identified, Arch. Zootechnica 8, 26-50 (2005) [Google Scholar]
  61. B.J. Muhiakdin, N. Saari, A.S.M. Hussin, Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply, Molecules 25(11), 2655 (2020) DOI: 10.3390/molecules25112655 [CrossRef] [Google Scholar]
  62. N. Wang, W. Wu, J. Pan, M. Long, Detoxification Strategies for Zearalenone Using Microorganisms: A Review, Microorganisms 7(7), 208 (2019) DOI: 10.3390/microorganisms7070208 [CrossRef] [Google Scholar]
  63. O. Molnar, G. Schatzmayr, E. Fuchs, H. Prillinger, Trichosporon mycotoxinivorans sp. nov., A New Yeast Species Useful in Biological Detoxification of Various Mycotoxins, Syst. Appl. Microbiol. 27(6), 661-671 (2004) DOI: 10.1078/0723202042369947 [CrossRef] [PubMed] [Google Scholar]
  64. E. Fuchs, E.M. Binder, D. Heidler, R. Krska, Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk. Assess. 19(4), 379-386 (2002) DOI: 10.1080/02652030110091154 [CrossRef] [Google Scholar]
  65. T. Klapec, B. Šarkanj, I. Banjari, I. Strelec, Urinary ochratoxin A and ochratoxin alpha in pregnant women, Food Chem. Tox. 50, 4487-4492 (2012) DOI: 10.1016/j.fct.2012.09.030 [CrossRef] [Google Scholar]
  66. B. Grenier, H.E. Schwartz-Zimmermann, C. Gruber-Dorninger, I. Dohnal, M. Aleschko, G. Schatzmayr, W.D. Moll, T.J. Applegate, Enzymatic hydrolysis of fumonisins in the gastrointestinal tract of broiler chickens, Poult Sci. 96(12), 4342-4351 (2017) DOI: 10.3382/ps/pex280 [CrossRef] [PubMed] [Google Scholar]
  67. F.B. Taheur, B. Kouidhi, Y.M.A. Al Qurashi, J.B. Salah-Abbes, K. Chaieb, Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 160, 12-22 (2019) DOI: 10.1016/j.toxicon.2019.02.001 [CrossRef] [PubMed] [Google Scholar]
  68. F. Wu, G.P. Munkvold, Mycotoxins in Ethanol Co-products: Modeling Economic Impacts on the Livestock Industry and Management Strategies, J. Agric. Food Chem. 56(11), 3900–3911 (2008) DOI: 10.1021/jf072697e [CrossRef] [PubMed] [Google Scholar]
  69. G.C. Shurson, The Role of Biofuels Coproducts in Feeding the World Sustainably, Annu Rev Anim Biosci. 5, 229-254 (2017) DOI: annurev-animal-022516-022907 [CrossRef] [PubMed] [Google Scholar]
  70. R. Krska, M. de Nijs, O. McNerney, M. Pichler, J. Gilbert, S. Edwards, M. Suman, N. Magan, V. Rossi, H.J. van der Fels-Klerx, F. Bagi, B. Poschmaier, M. Sulyok, F. Berthiller, H.P. van Egmond, Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox approach, World Mycotoxin J. 9(4), 487-495 (2016) DOI: 10.3920/WMJ2016.2136 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.