Open Access
E3S Web of Conf.
Volume 215, 2020
International Scientific Conference on Biotechnology and Food Technology (BFT-2020)
Article Number 01006
Number of page(s) 8
Section Modern Biotechnology in Food Safety and Quality
Published online 02 December 2020
  1. M. Shamtsyan, Potential to develop functional food products from mushroom bioactive compounds, Journal of Hygienic Engineering and Design 15, 51-59 (2016) [Google Scholar]
  2. G.H. Mulder, G.H. Wessels, Molecular cloning of RNAs differentially expressed in monokaryons and dikaryons of Schizophyllum commune in relation to fruiting, Exp. Myc. 10 (1986) [Google Scholar]
  3. A.H.Y. Kwan, R.D. Winefield, M. Sunde, J.M. Matthews, R.G. Haverkamp, M.D. Templeton, J.P. Mackay, Structural basis for rodlet assembly in fungal hydrophobins, Proc. Natl. Acad. Sci. USA. 103 (2006) [Google Scholar]
  4. H.J. Hektor, K. Scholtmeijer, Hydrophobins: proteins with potential, Cur. Op. in Biotech. 16, 7 (2005) [Google Scholar]
  5. J.G. Wessels, Hydrophobins: proteins that change the nature of the fungal surface, Adv. Microb. Physiol. 38 (1997) [Google Scholar]
  6. B.G. Jensen, M.R. Andersen, M.H. Pedersen, J. Frisvad, I. Søndergaard, Hydrophobins from Aspergillus species cannot be clearly divided into two classes, BMC Res. Notes. 3 (2010) [CrossRef] [Google Scholar]
  7. K.A. Littlejohna, P. Hooleyb, P.W. Cox, Bioinformatics predicts diverse Aspergillus hydrophobins with novel properties, F. Hydrocol. 27 (2012) [Google Scholar]
  8. M. Artini, P. Cicatiello, A. Ricciardelli, R. Papa, L. Selan, P. Dardano, M. Tilotta, G. Vrenna, M.L. Tutino, P. Giardina, E. Parrilli, Hydrophobin coating prevents Staphylococcus epidermidis biofilm formation on different surfaces, Biof.ouling. 33, 7 (2017) [Google Scholar]
  9. V. Lo, J.I-Chun Lai, M. Sunde, Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials, Biol. and Bio-insp. Nanomat. 1174 (2019) [Google Scholar]
  10. M.I. Janssen, M.B.B. van Leeuwen, Th.G. van Kooten, J. de Vries, L. Dijkhiuzen, H. Wosten, Promotion of fibroblast activity by coating with hydrophobins in the b-sheet end state, Biomat. 25 (2004, [Google Scholar]
  11. K. Scholtmeijer, M.I. Janssen, B. Gerssen, M.L. de Vocht, B.M. van Leeuwen, Th.G. van Kooten, H.A.B. Wösten, J.G.H. Wessels, Surface modifications created by using engineered hydrophobins, Appl. Environ. Microbiol. 68 (2002) [CrossRef] [Google Scholar]
  12. R. Misra, J. Li, G.C. Cannon, S. E. Morgan, Nanoscale reduction in surface friction of polymer surfaces modified with Sc3 hydrophobin from Schizophyllum commune, Biomacromol. 7 (2006) [Google Scholar]
  13. M. Torkkeli, R. Serimaa, O. Ikkala, Aggregation and Self-Assembly of Hydrophobins from Trichoderma reesei: Low-Resolution Structural Models, Bioph. J. 83, 4 (2002) [CrossRef] [Google Scholar]
  14. J. Wessels, O. de Vries, S.A. Asgeirsdottir, F. Schuren, Hydrophobin Genes lnvolved in Formation of Aerial Hyphae and Fruit Bodies in Schizophyllum, The Plant Cell. 3 (1991) [CrossRef] [Google Scholar]
  15. O.M.H. de Vries, M.P. Fekkes, H.A.B. Wosten, J.G. Wessels, Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi, Arch. Microbiol. 159 (1993) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.