Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 01032
Number of page(s) 7
Section Research on Energy Technology Application and Consumption Structure
DOI https://doi.org/10.1051/e3sconf/202021801032
Published online 11 December 2020
  1. Chen D. S, Sung B, Wing L, N et al. State reducing Panzhhihua titanomagnet.cncentrates. what.pullverized.coal.[J]. Minerals Energying, 2011, 24 (4): 864-869. [CrossRef] [Google Scholar]
  2. Hu T, Lv XW, Bai C, G et al. Reducing Behavior of Panzhhihua titanomagnet. cncentrates. what. coal.[J]. Metaling and Materials Transactions. B, 2013, 44 (4): 252-260. [CrossRef] [Google Scholar]
  3. Zhanging L, Zhanging L, N, Wng M, Y, et al. Recovery Titanium Communications from Ti-bearing bladder slag under they dynamic ox xi ia dio ning[J]. Minerals, Engingering, 2007, 20 (2): 684-693. [CrossRef] [Google Scholar]
  4. Chen S. Y, Chu M. S. and vanadium titanomagnetite [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21 (3): 225-232. [CrossRef] [Google Scholar]
  5. Ozturk B, Fruehan R. slag [J]. Metalogy and Materials Transactions B, 2013, 26 (4): 1086-1088. [CrossRef] [Google Scholar]
  6. Liu, Y, H, Lv, X, W, Bai, C, G. Density of blast furnace bering TiO2 at 1673. K. [J], ISIJ. Internatonal, 2014, 54 (9): 2017-2020. [CrossRef] [Google Scholar]
  7. Jena. B. C, Dresler. W, Reilly. I. G. Extraction of titanium, vanadium and and iron from titanomagnetite Minerals, Engeringer, 1995, 8 (1): 159-168. [Google Scholar]
  8. Biswas R, K, Islam, M, F, Hab, M, A. Professional Ilmenite through salt-water. vapor. roasting. and learning. [J]. Hydrometalugry, 1996, 42 (2): 367-375. [CrossRef] [Google Scholar]
  9. Klawonn R M, Siuka D. Current status and future of the Midrex direct reduction technology. 2006, 126(3): 23-29. [Google Scholar]
  10. Shams A, Moazeni F. Modeling and Simulation of the MIDREX Shaft Furnace: Reduction, Transition and Cooling Zones. JOM, 2015, 67(11): 2681-2689. [Google Scholar]
  11. Huitu K, Helle M, Helle H, Marko K K, Henrik S. Optimization of Midrex Direct Reduced Iron Use in Ore-Based Steelmaking. 2015, 86(5): 456-465. [Google Scholar]
  12. Kopfle J, Hunter R. Direct reduction’s role in the world steel industry. 2008, 35(4): 254-259. [Google Scholar]
  13. Hu J G. Development of Gas-Based Shaft Furnace Direct Reduction Technology. 2009, 16: 1288-1291. [Google Scholar]
  14. Rob C. Gasification and the Midrex Dirext Reduction Process: Gasification Technologies Conference, 1999[C]. [Google Scholar]
  15. Maschlanka W, Post G. Midrex Process For Direct Reduction of IRON-ORE. Revue De Metallurgie Cahiers D Informations Techniques, 1975, 72(11): 781-794. [Google Scholar]
  16. Chaudhary N. Midrex Direct Reduction Plant. Brichaut F. 2000: 339-341. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.