Open Access
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 01033
Number of page(s) 7
Section Research on Energy Technology Application and Consumption Structure
Published online 11 December 2020
  1. Gahan C S. Cunha M L. Sandstrom A. Comparative study on different steel slags as neutralising agent in bioleaching [J]. Hydrometallurgy, 2009 95(3-4): 190-197 [CrossRef] [Google Scholar]
  2. Renforth P, Washbourne C L, Taylder J, et al. Silicate production and availability for mineral carbonation [J]. Environmcntal Science & Technology, 2011, 45(6): 2035-2041 [CrossRef] [Google Scholar]
  3. China Steel Industry Yearbook 2013R [Google Scholar]
  4. Navarro C, Diaz M, Villa-Garcia M A. Physico-Chemical Characterization of Steel Slag. Study of its Behavior under Simulated Environmental Conditions[J]. Environmental Science & Technology, 2010, 44(14): P. 5383-5388. [CrossRef] [PubMed] [Google Scholar]
  5. Ye Bin. Process technology and industrialization of converter steel slag gas crushing [D]. Metallurgical Engineering of Chongqing University. 2003 [Google Scholar]
  6. Yang Huaming, Cui Jianli, Zhao Wu, et al. Research progress of comprehensive treatment of “three wastes” in iron and steel plants[J]. Angang Technology, 201(1): 1-7 [Google Scholar]
  7. van Zomeren A, van der Laan S R, Kobesen H B A, et al. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low Copressure[J]. Waste Management, 2011, 31(11): 2236-2244 [CrossRef] [Google Scholar]
  8. Poh H Y, Ghataora G S, Ghazireh N. Soil Stabilization Using Basic Oxygen Steel Slag Fines[J]. Journal of Materials in Civil Engineering, 2006, 18(2):229-240. [CrossRef] [Google Scholar]
  9. Yi H, Xu G, Cheng H, et al. An overview of utilization of steel slag[J]. Procedia Environmental Sciences, 2012, 16:791-80 [CrossRef] [Google Scholar]
  10. Zhang Geng. Status of comprehensive utilization of Baosteel steel slag [J]. Baosteel Technology, 2006(1): 20-24. [Google Scholar]
  11. Sas W, Gluchowski A, Radziemska M, et al. Environmental and geotechnical assessment of the steel slags as a material for road structure[J]. Materials, 2015, 8(8): 4857-4875 [CrossRef] [Google Scholar]
  12. Ahmedzade P, Sengoz B. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete[J]. Journal of Hazardous Materials, 2009, 165(1-3): 300-305 [CrossRef] [PubMed] [Google Scholar]
  13. Liu Hao, Ding Jianping, Li Zhenguo, et al. Application of new materials in the pavement overhaul project of Chang’an Street in Beijing [J]. Municipal Technology, 2010, 28(1): 23-25, 29 [Google Scholar]
  14. Qi Guanghe. Application of Steel Slag Asphalt Mixture in Urumqi Municipal Road Engineering[J]. Highway Transportation Technology (Application Technology Edition), 2014(03):122-124. [Google Scholar]
  15. Huang Yi, Status of the application of steel slag in road engineering: 2014 National Metallurgical Energy Environmental Protection Production Technology Association, Wuhan 2014[C] [Google Scholar]
  16. Zhao Junxue, Li Xiaoming, Tang Wenxian, et al. Comprehensive utilization technology and progress analysis of steel slag[J]. Angang Technology, 2013(3): 1-6.24. [Google Scholar]
  17. Altun I A, Yilmaz I. Study on steel fumace slags with high Mgo as additive in Portland cement [J] Cement and Concrete Research 2002, 32(PIS0008-8846(02)000763-98): 1247-1249 [CrossRef] [Google Scholar]
  18. Wen Xilian, Ouyang Dong, Pan Pan. Research on C100 high chloride ion permeability concrete prepared by steel slag composite admixture[J]. Concrete, 2011(06): 73-75. [Google Scholar]
  19. Zhang Zhaohui, Liao Jielong, Ju Jiantao, et al. Steel slag treatment process and steel slag utilization technology at home and abroad [J]. Journal of Iron and Steel Research, 2013, 25(7): 14. [CrossRef] [Google Scholar]
  20. Nan Xueli. Development of glass-ceramics [D]. Materials Science of Lanzhou University of Technology, 2006. [Google Scholar]
  21. Zhang Kai, Wu Wenfei, Li Baowei. The effect of crystallization time on the structure and properties of steel slag glass-ceramics [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014(5):71-74. [Google Scholar]
  22. Yao Qiang, Lu Lei, Jiang Qin, et al. Effect of additives on bending strength and color of steel slag glass-ceramics [J] Silicate Bulletin 2005, 24(4): 104-106 [Google Scholar]
  23. Li Yu, Zhang Lingling, Wang Yang, etc. The influence of sintering atmosphere on the properties of steel slag glass-ceramic composites: the 17th National Annual Conference of High-Tech Ceramics, Nanjing, 2012[C] [Google Scholar]
  24. Makela M, Watkins G, Poykio R, et al. Utilization of steel, pulp and paaper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability [J]. Journal of Hazardous Materials, 2012, 207(S1): 21-27. [CrossRef] [PubMed] [Google Scholar]
  25. Wu Zhihong, Zou Zongshu, Wang Chengzhi. Reuse of converter steel slag in agricultural production [J]. Comprehensive Utilization of Mineral Resources 2005(6): 25-28. [Google Scholar]
  26. Xue Y, Hou H, Zhu S. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag[J]. Journal of Hazardous Materials, 2009, 162(2-3): 973-980 [CrossRef] [PubMed] [Google Scholar]
  27. Claveau-mallet D, Wallace S, Comeau Y. Model of phosphorus precipitation and crystal formation in electric arc furnace steel slag filters [J]. Environmental Science Technology 2012, 46(3):1465-1470. [CrossRef] [Google Scholar]
  28. Claveau-mallet D, Courcelles B, Comeau Y Phosphorus removal by steel slag filters: modeling dissolution and precipitation kinetics to predict longevity[J]. Environmental Science Technology, 2014,. 48(13):7486-7493. [CrossRef] [Google Scholar]
  29. Barca C, Troesch S, Meyer D, et al. Steel slag filters to upgrade phosphorus removal in constructed wetlands: two years of field experiments [J]. Environmental Science & Technology, 2013, 47(1):549-556 [CrossRef] [PubMed] [Google Scholar]
  30. Ochola C E, Moo-young H K. Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag)[J]. Environmental Science & Technology, 2004, 38(22): 6161-6165 [CrossRef] [PubMed] [Google Scholar]
  31. Kim D, Shin M, Choi H, et al. Removal mechanisms of copper using steel-making slag adsorption and precipitation [J]. Desalination, 2008, 223(1-3): 283-289 [CrossRef] [Google Scholar]
  32. Liu S, Gao J, Yang Y, et al. Adsorption intrinsic kinetics and isotherms of lead ions on steel slag [J] Journal of Hazardous Materials, 2010, 173(1-3): 558-562. [CrossRef] [PubMed] [Google Scholar]
  33. Oh C, Rhee S, Oh M, et al. Removal characteristics of A(II)and A(V)from acidic aqueous solution by steel making slag[J]. Journal of Hazardous Materials, 2012, 213: 147-155 [CrossRef] [PubMed] [Google Scholar]
  34. Jinming D, Bing S Removal characteristics of Cd (ID) from acidic aqueous solution by modified steel-making slag [J]. Chemical Engineering Journal, 2014, 246: 160-167 [CrossRef] [Google Scholar]
  35. Asaoka S, Okamura H, Morisawa R, et al. Removal of hydrogen sulfide using carbonated steel Slag[J]. Chemical Engineering Journal, 2013, 228: 843-849 [CrossRef] [Google Scholar]
  36. Montes-moran M A, Conches A, Canals-batlle C, et al. Linz-donawitz steel slag for the removal of hydrogen sulfide at room temperature[J]. Environmental Science Technology 2012, 46(16):8992-8997 [CrossRef] [Google Scholar]
  37. Zhang J, Zhou J Z, Xu Z P, et al. Decomposition of potent greenhouse gas sulfur hexafluoride (SF6)by kirschsteinite-dominant stainless steel slag [J]. Environmental Science&Technology, 2014, 48(1):599-606. [CrossRef] [Google Scholar]
  38. Sanna A, Dri M, Hall M R, et al. Waste materials for carbon capture and storage by mineralisation (CCSM) A UK perspective[J]. Applied Energy, 2012, 99: 545-554 [CrossRef] [Google Scholar]
  39. Gunning P J, Hills C D, Carey P J. Accelerated carbonation treatment of industrial wastes [J] Waste Management. 2010. 30(6): 1081-1090 [CrossRef] [Google Scholar]
  40. Huijgen W J, Comans R N J. Mineral CO2 sequestration by steel slag carbonation [J] Environmental Science Technology, 2005, 39(24): 9676-9682 [CrossRef] [Google Scholar]
  41. Bonenfant D, Kharoune L, Sauve S, et al. CO sequest ration potential of steel slags at ambient pressure and temperature [J] Industrial Engineering Chemistry Research, 2008, 47(20):7610-7616. [CrossRef] [Google Scholar]
  42. Chang E E, Chen C, Chen Y, et al. Performance evaluation for carbonation of steel-making slags in a slurry reactor[J]. Journal of Hazardous Materials, 2011, 186(1): 558-564 [CrossRef] [PubMed] [Google Scholar]
  43. Chang EE, Pan S, Chen Y, et al. CO sequestration by carbonation of steelmaking slags in an autoclave reactor. Journal of Hazardous Materials. 20 t195: 107-114. [Google Scholar]
  44. Yu J, Wang K. Study on characteristics of steel slag for CO capture [J]. Energy Fuels, 2011 25(11):5483-5492 [CrossRef] [Google Scholar]
  45. Bao Weijun, Li Huiquan, Zhang Yi. Research progress of carbonation fixation of greenhouse gas CO2 minerals [J]. Journal of Chemical Engineering, 2007, 8(1): 1-9. [Google Scholar]
  46. Raupach M R, Marland G, Ciais P, et al. Global and regional drivers of accelerating CO2 emissions[J]. Proc Natl Acad Sci U S A, 2007, 104(24): 10288-10293. [CrossRef] [PubMed] [Google Scholar]
  47. IPCC. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge, United Kingdom and New York, NY, USA: 2013. [Google Scholar]
  48. Bertos M F, Li X, Simons S, et al. Investigation of accelerated carbonation for the stabilization of MSW incinerator ashes and the sequestration of CO2 [U]. Green Chemistry, 2004, 6(8):428-436. [CrossRef] [Google Scholar]
  49. Liu Z, Guan D, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China [J]. Nature, 2015, 524 (7565): 335-338. [CrossRef] [PubMed] [Google Scholar]
  50. Napp T A, Gambhir A, Hills T P, et al. A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 616-640. [CrossRef] [Google Scholar]
  51. Ho M T, Bustamante A, Wiley D E. Comparison of CO2 capture economics for iron and steel mills[J]. International Journal of Greenhouse Gas Control, 2013, 19: 145-159. [CrossRef] [Google Scholar]
  52. Oda J, Akimoto K, Tomoda T, et al. International comparisons of energy efficiency in power, steel, and cement industries[J]. Energy Policy, 2012, 44: 118-129. [CrossRef] [Google Scholar]
  53. Han Ying, Li Lianshui, Sun Ning. Research on carbon dioxide emissions of China’s iron and steel industry [J] Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2011(01):53-57. [Google Scholar]
  54. Internat ional Energy Agency(EA). Tracking clean energy progress 2014[M]. 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.