Open Access
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03017
Number of page(s) 8
Section Environmental Chemistry and Environmental Pollution Analysis and Control
Published online 11 December 2020
  1. Alberich S, Martínez-Cengotitabengoa M, López P. Efficacy and safety of ketamine in bipolar depression:A systematic review[J]. Rev Psiquiatr Salud Ment, 2017, 10 (2) :104-112. [CrossRef] [Google Scholar]
  2. Ren W, Luan X, Zhang J, et al. Brain-derived neurotrophic factor levels and depression during methamphetaminewithdrawal[J]. J Affective Disorders, 2017, 15 (221) :165-171. [CrossRef] [Google Scholar]
  3. Zannas AS, Wiechmann T, Gassen NC, et al. Genestress-epigenetic regulation of FKBP5:clinical and translational implications[J]. Neuropsy chopharmacology, 2016, 41 (1) :261-274. [CrossRef] [Google Scholar]
  4. Yang Y, Cui Y, Sang K, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression[J]. Nature, 2018, 554 (7692) :317-322. [CrossRef] [PubMed] [Google Scholar]
  5. Mrazek DA, Hornberger JC, Altar CA, et al. A Review of the clinical, economic, and societal burden of treatment-resistant depression: 1996-2013 [J]. Psychiatric Services, 2014, 65 (8) :977-987. [CrossRef] [Google Scholar]
  6. Song M, Martinowich K, Lee FS. BDNF at the synapse: why location matters[J]. Molecular Psychiatry, 2017, 22 (10) :1370-1375. [CrossRef] [PubMed] [Google Scholar]
  7. Roubertoux P L, Tordjman S, Caubit X, et al. Construct validity and cross validity of a test battery modeling autism spectrum disorder (ASD) in mice[J]. Behav Genet, 2020, 50(1):26-40. DOI:10.1007/s10519-019-09970-x. [CrossRef] [PubMed] [Google Scholar]
  8. De Rubeis S, He X, Goldberg A P, et al. Synaptic, transcriptional and chromatin genes disrupted in autism[J]. Nature, 2014, 515 (7526):209-215. DOI:10.1038/nature13772. [CrossRef] [PubMed] [Google Scholar]
  9. Yang Y R, Kang D S, Lee C, et al. Primary phospholipase C and brain disorders[J]. Adv Biol Regul, 2016, 61:80-85. DOI: 10.1016/j.jbior.2015.11.003. [CrossRef] [PubMed] [Google Scholar]
  10. Jang H J, Suh P G, Lee Y J, et al. PLCγ1:Potential arbitrator of cancer progression[J]. Adv Biol Regul, 2018, 67:179-189.DOI:10.1016/j.jbior.2017.11.003. [CrossRef] [PubMed] [Google Scholar]
  11. Wang M J, Jiang L, Chen H S, et al. Levetiracetam protects against cognitive impairment of subthreshold convulsant discharge model rats by activating protein kinase C (PKC)-growth-associated protein 43 (GAP-43)-calmodulin-dependent protein kinase (CaMK) signal transduction pathway[J]. Med Sci Monit, 2019, 25: 4627-4638.DOI: 10.12659/MSM.913542. [CrossRef] [PubMed] [Google Scholar]
  12. Kim H Y, Yang Y R, Hwang H, et al. Deletion of PLCγ1 in GABAergic neurons increases seizure susceptibility in aged mice[J]. Sci Rep, 2019, 9(1): 17761.DOI: 10.1038/s41598-019-54477-4. [CrossRef] [PubMed] [Google Scholar]
  13. Ringsevjen H, Umbach Hansen H M, Hussain S, et al. Presynaptic increase in IP3 receptor type 1 concentration in the early phase of hippocampal synaptic plasticity[J]. Brain Res, 2019, 1706:125-134.DOI:10.1016/j.brainres.2018.10.030. [CrossRef] [PubMed] [Google Scholar]
  14. Landolt H P, Wehrle R. Antagonism of serotonergic 5-HT2A/2Creceptors:mutual improvement of sleep, cognition and mood?[J]. Eur J Neurosci, 2009, 29 (9) :1795. [CrossRef] [PubMed] [Google Scholar]
  15. Alexandre C, Popa D, Fabre V, et al. Early life blockade of 5-hydroxytryptamine 1A receptors normalizes sleep and depression-like behavior in adult knock-out mice lacking the serotonin trans-porter[J]. J Neurosci, 2006, 26 (20) :54-5. [CrossRef] [Google Scholar]
  16. Wei Haojie; Wei-ping xu; Wei Chen Cheng. Effect of Huangjing saponins on 5-HT1AR/cAMP/PKA signaling pathway in hippocampus of rats with chronic stress depression. Journal of Anhui Medical University. 2012 (05):38-42 [Google Scholar]
  17. Lee SJ, Kim HE, Choi SE, et al. Involvement of Ca in genistein-induced potentiation of leucine/glutamine-stimulated insulin secretion[J]. Molcells, 200928(3):167-174 [Google Scholar]
  18. Benito E, Barco A. CREB’s control of intrinsic and synaptic plasticity:implications for CREB-dependent memory models[J]. Trends Neurosci, 2010; 33 (5) :230-40. [CrossRef] [PubMed] [Google Scholar]
  19. Fu H, Li W, Lao Y, et al. Bis (7)-tacrine attenuates beta amyloid-induced neuronal apoptosis by regulating L-type calcium channels[J]. J Neurochem, 2006; 98 (5) :1400-10. [CrossRef] [PubMed] [Google Scholar]
  20. Cross JL, Meloni BP, Bakker AJ, et al. Modes of neuronal calcium entry and homeostasis following cerebral ischemia[J]. Stroke Res Treat, 2010;2010: 316862. [Google Scholar]
  21. Li H, Zhang L, Huang Q. Differential expression of mitogen-activatedprotein kinase signaling pathway in the hippocampus of rats exposed tochronic unpredictable stress[J]. Behav Brain Res, 2009, 205 (1) :32-37. [CrossRef] [PubMed] [Google Scholar]
  22. Tang G M, Gudsnuk K, Kuo S H, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits[J]. Neuron, 2014, 83(5):1131-1143.DOI:10.1016/j.neuron.2014.07.040. [CrossRef] [PubMed] [Google Scholar]
  23. Markram K, Rinaldi T, La Mendola D, et al. Abnormal fear conditioning and amygdala processing in an animal model of autism[J]. Neuropsychopharmacology, 2008, 33(4): 901-912. DOI:10.1038/sj.npp.1301453. [CrossRef] [PubMed] [Google Scholar]
  24. Hara Y, Ago Y, Taruta A, et al. Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice[J]. Psychopharmacology (Berl), 2017, 234(21):3217-3228.DOI:10.1007/s00213-017-4703-9. [CrossRef] [PubMed] [Google Scholar]
  25. Yamaguchi H, Hara Y, Ago Y, et al. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice[J]. Behav Brain Res, 2017, 333:67-73.DOI:10.1016/j.bbr.2017.06.035. [CrossRef] [PubMed] [Google Scholar]
  26. Yang Y R, Jung J H, Kim S J, et al. Forebrain-specific ablation of phospholipase Cγ1 causes manic-like behavior[J]. Mol Psychiatry, 2017, 22(10):1473-1482.DOI:10.1038/mp.2016.261. [CrossRef] [PubMed] [Google Scholar]
  27. Shimohama S, Sumida Y, Fujimoto S, et al. Differential expression of rat brain phospholipase C isozymes in development and aging[J]. Biochem Biophys Res Commun, 1998, 243(1):210-216. DOI:10.1006/bbrc.1998.8090. [CrossRef] [Google Scholar]
  28. Giralt A, Rodrigo T, MartÍn E D, et al. Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipase C gamma activity and glutamate receptor expression[J]. Neuroscience, 2009, 158(4): 1234-1250. DOI: 10.1016/j.neuroscience.2008.11.024. [CrossRef] [Google Scholar]
  29. Sharp A H, Nucifora F CJr, Blondel O, et al. Differential cellular expression of isoforms of inositol 1, 4, 5-triphosphate receptors in neurons and Glia in brain[J]. J Comp Neurol, 1999, 406(2):207-220. [CrossRef] [PubMed] [Google Scholar]
  30. Takemoto-Kimura S, Suzuki K, Horigane S I, et al. Calmodulin kinases: essential regulators in health and disease[J]. J Neurochem, 2017, 141(6): 808-818. DOI: 10.1111/jnc.14020. [CrossRef] [PubMed] [Google Scholar]
  31. Xu J, Liu Z A, Pei D S, et al. Calcium/calmodulin-dependent kinase II facilitated GluR6 subunit serine phosphorylation through GluR6-PSD95-CaMKII signaling module assembly in cerebral ischemia injury[J]. Brain Res, 2010, 1366: 197-203. DOI: 10.1016/j.brainres.2010.09.087. [CrossRef] [PubMed] [Google Scholar]
  32. Penzes P, Cahill M E, Jones K A, et al. Convergent CaMK and RacGEF signals control dendritic structure and function[J]. Trends Cell Biol, 2008, 18(9): 405-413. DOI: 10.1016/j.tcb.2008.07.002. [CrossRef] [Google Scholar]
  33. Schmunk G, Boubion B J, Smith I F, et al. Shared functional defect in IP3 R-mediated calcium signaling in diverse monogenic autism syndromes[J]. Transl Psychiatry, 2015, 5: e643. DOI:10.1038/tp.2015.123. [CrossRef] [PubMed] [Google Scholar]
  34. KÜRY S, Van Woerden G M, Besnard T, et al. De novo mutations in protein kinase genes CAMK2A and CAMK2B cause intellectual disability[J]. Am J Hum Genet, 2017, 101(5):768-788. DOI:10.1016/j.ajhg.2017.10.003. [CrossRef] [Google Scholar]
  35. Coley A A, Gao W J. PSD95: a synaptic protein implicated in schizophrenia or autism?[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 82:187-194. DOI:10.1016/j.pnpbp.2017.11.016. [CrossRef] [PubMed] [Google Scholar]
  36. Rodrigues R, Petersen R B, Perry G. Parallels between major depressive disorder and Alzheimer’s disease: Role of oxidative stress and genetic vulnerability. Cell Mol Neurobiol, 2014, 34:925-949 [CrossRef] [PubMed] [Google Scholar]
  37. Malki K, Keers R, Tosto G M, et al. The endogenous and reactive depression subtypes revisited: Integrative animal and human studies implicate multiple distinct molecular mechanism underlying major depressive disorder. BMC Med, 2014, 12:73-86 [CrossRef] [PubMed] [Google Scholar]
  38. Xu Ming-min. Effect of acupuncture on erK1/2-CREB-BDNF signaling pathway in prefrontal cortex of depressed rats. Beijing University of Chinese Medicine. 2016 (08) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.