Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03019
Number of page(s) 4
Section Environmental Chemistry and Environmental Pollution Analysis and Control
DOI https://doi.org/10.1051/e3sconf/202021803019
Published online 11 December 2020
  1. Agusti-Juan I.; G. Habert, Environmental implications and opportunities of digital fabrication. In Sustainable Built Environment (SBE) Regional Conference, Habert G.; Schlueter, A., Eds. Zurich, SWITZERLAND, 2016; pp 304-308, 10.3218/37746_49. [Google Scholar]
  2. Alghamdi H.; S. A. O. Nair; N. Neithalath. (2019) Insights into material design, extrusion rheology, and properties of 3d-printable alkaliactivated fly ash-based binders. Materials & Design, 167. [Google Scholar]
  3. Bajpayee A.; M. Farahbakhsh; U. Zakira; A. Pandey; L. Abu Ennab; Z. Rybkowski; M. K. Dixit; P. A. Schwab; N. Kalantar; B. Birgisson; S. Banerjee. (2020) In situ resource utilization and reconfiguration of soils into construction materials for the additive manufacturing of buildings. Frontiers in Materials, 7. [Google Scholar]
  4. Barnett E.; C. Gosselin. (2015) Large-scale 3d printing with a cable-suspended robot. Additive Manufacturing, 7: 27-44. [CrossRef] [Google Scholar]
  5. Beyhan F.; S. A. Selcuk, 3d printing in architecture: One step closer to a sustainable built environment. In Proceedings of 3rd international sustainable buildings symposium, Firat S.; Kinuthia J.; AbuTair, A., Eds. 2018; Vol. 6, pp 253-268. [Google Scholar]
  6. Camacho, D. D.; P. Clayton; W. J. O’Brien; C. Seepersad; M. Juenger; R. Ferron; S. Salamone. (2018) Applications of additive manufacturing in the construction industry a forward-looking review. Automat Constr, 89: 110-119. [CrossRef] [Google Scholar]
  7. Ding Z.; X. Wang; J. Sanjayan; P. X. W. Zou; Z.-K. Ding. (2018) A feasibility study on hpmc-improved sulphoaluminate cement for 3d printing. Materials, 11. [Google Scholar]
  8. Yin X.; K. Liu; S. Zheng; K. Zhuang; X. Wang; Y. Fang; Z. Ding. (2020) 3d printable ‘just-add-water glass and water’geopolymer-an experimental research based on extrusion-based 3d printing practices. MS&E, 780: 042044. [Google Scholar]
  9. Sun X.; Q. Wang; H. Wang; L. Chen. (2020) Influence of multi-walled nanotubes on the fresh and hardened properties of a 3d printing pva mortar ink. Constr. Build. Mater., 247: 118590. [CrossRef] [Google Scholar]
  10. Panda B.; S. C. Paul; N. A. N. Mohamed; Y. W. D. Tay; M. J. Tan. (2018) Measurement of tensile bond strength of 3d printed geopolymer mortar. Measurement, 113: 108-116. [CrossRef] [Google Scholar]
  11. Bong, S. H.; B. Nematollahi; A. Nazari; M. Xia; J. Sanjayan. (2019) Method of optimisation for ambient temperature cured sustainable geopolymers for 3d printing construction applications. Materials, 12. [Google Scholar]
  12. Li Z.; L. Wang; G. Ma. (2020) Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3d printing subjected to different loading conditions. Compos Part B-Eng, 187. [Google Scholar]
  13. Ma G.; Z. Li; L. Wang; G. Bai. (2019) Micro-cable reinforced geopolymer composite for extrusion-based 3d printing. Mater. Lett., 235: 144-147. [CrossRef] [Google Scholar]
  14. Panda B.; S. C. Paul; L. J. Hui; Y. W. D. Tay; M. J. Tan. (2017) Additive manufacturing of geopolymer for sustainable built environment. Journal of Cleaner Production, 167: 281-288. [CrossRef] [Google Scholar]
  15. Alghamdi H.; N. Neithalath. (2019) Synthesis and characterization of 3d-printable geopolymeric foams for thermally efficient building envelope materials. Cem. Concr. Compos., 104. [Google Scholar]
  16. Lim, J. H.; B. Panda; P. Quang-Cuong. (2018) Improving flexural characteristics of 3d printed geopolymer composites with in-process steel cable reinforcement. Constr. Build. Mater., 178: 3241. [CrossRef] [Google Scholar]
  17. Nematollahi B.; P. Vijay; J. Sanjayan; A. Nazari; M. Xia; V. N. Nerella; V. Mechtcherine. (2018) Effect of polypropylene fibre addition on properties of geopolymers made by 3d printing for digital construction. Materials, 11. [Google Scholar]
  18. Ohno M.; V. C. Li. (2018) An integrated design method of engineered geopolymer composite. Cem. Concr. Compos., 88: 73-85. [CrossRef] [Google Scholar]
  19. Panda B.; C. Unluer; M. J. Tan. (2018) Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3d printing. Cem. Concr. Compos., 94: 307-314. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.