Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03028
Number of page(s) 6
Section Environmental Chemistry and Environmental Pollution Analysis and Control
DOI https://doi.org/10.1051/e3sconf/202021803028
Published online 11 December 2020
  1. Us Choi. Enhancing Thermal Conductivity of Fluids with Nanoparticles. Developments and Applications of Non-Newtonian Flows. ASME, NY, 1995: 99-105. [Google Scholar]
  2. Nan Wang, Jun Chen, Qingsong An, et al. Molecular dynamics study of the dispersion stability of nanofluids. Journal of Engineering Thermophysics, 2011, 32(7):1107-1110. (In Chinese) [Google Scholar]
  3. Zakaria I A, Wan A N W M, Mamat A M I, et al. Thermal performance of Al2O3in water ethylene glycol nanofluid mixture as cooling medium in mini channel. AIP Publishing LLC, 2015: 2494-2507. [Google Scholar]
  4. Li X, Zhu D, Wang X. Evaluation on dispersion behavior of the aqueous copper nano-suspensions. Journal of Colloid & Interface Science, 2007, 310(2):456-63. [CrossRef] [Google Scholar]
  5. Min Zhang, Michael Siedow, Gregory Saia, et al. Molecular Scale Aspects of Liquid Contact on a Solid Surface. Solid Surface Therm. Sci. Eng, 2002, 70(8): e458. [Google Scholar]
  6. Maruyama S, Matsumoto S, Shoji M, et al. A Molecular Dynamics Study Of Interface Phenomena Of A Liquid Droplet. Begel House Inc., 1999. [Google Scholar]
  7. Kimura T, Maruyama S. Molecular Dynamics Simulation of Water Droplet in contact with a Platinum Surface. 2008: 537-542. [Google Scholar]
  8. Maruyama S, Kimura T. A Molecular Dynamics Simulation of Bubble Nucleation on Solid Surface. Nihon Kikai Gakkai Ronbunshu B Hen/transactions of the Japan Society of Mechanical Engineers Part B, 2000, 65(638):3461-3467. [Google Scholar]
  9. Ji C Y, Yan Y Y. A molecular dynamics simulation of liquid–vapour–solid system near triple-phase contact line of flow boiling in a microchannel. Applied Thermal Engineering, 2008, 28 (2–3):195-202. [CrossRef] [Google Scholar]
  10. Carey V P, Wemhoff A P. Thermodynamic analysis of near-wall effects on phase stability and homogeneous nucleation during rapid surface heating. International Journal of Heat & Mass Transfer, 2005, 48(25):5431-5445. [CrossRef] [Google Scholar]
  11. Wang C S, Chen J S, Shiomi J, et al. A study on the thermal resistance over solid–liquid–vapor interfaces in a finite-space by a molecular dynamics method. International Journal of Thermal Sciences, 2007, 46(12):1203-1210. [CrossRef] [Google Scholar]
  12. Xue L, Keblinski P, Phillpot S R, et al. Two regimes of thermal resistance at a liquid–solid interface. Journal of Chemical Physics, 2003, 118(1):337-339. [CrossRef] [Google Scholar]
  13. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117: 142. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.