Open Access
Issue
E3S Web Conf.
Volume 228, 2021
2020 International Conference on Climate Change, Green Energy and Environmental Sustainability (CCGEES 2020)
Article Number 01003
Number of page(s) 4
Section Research on Green Energy Utilization and Development Technology
DOI https://doi.org/10.1051/e3sconf/202122801003
Published online 13 January 2021
  1. Z. Wang, X. Dou, P. Wu, S. Liang, B. Cai, L. Cao, L. Pang, X. Bo, and L. Wei, Who is a good neighbor? Analysis of frontrunner cities with comparative advantages in low-carbon development, Journal of Environmental Management, 269, 110804. (2020) [CrossRef] [PubMed] [Google Scholar]
  2. Y. Wang, X. Fang, S. Yin, and W. Chen, Low-carbon development quality of cities in China: Evaluation and obstacle analysis, Sustainable Cities and Society, 64, 102553. (2021) [CrossRef] [Google Scholar]
  3. S. Tan, J. Yang, J. Yan, C. Lee, H. Hashim, and B. Chen, A holistic low carbon city indicator framework for sustainable development, Applied Energy, 185, 1919-1930. (2017) [CrossRef] [Google Scholar]
  4. H. Azizalrahman, and V. Hasyimi, Towards a generic multi-criteria evaluation model for low carbon cities, Sustainable Cities and Society, 39, 275-282. (2018) [CrossRef] [Google Scholar]
  5. J. Zhang, and Y. Zhang, Assessing the low-carbon tourism in the tourism-based urban destinations, Journal of Cleaner Production, 276, 124-303. (2020) [Google Scholar]
  6. J. Pongthanaisawan, W. Wangjiraniran, K. Chuenwong, and L. Pimonsree, Scenario Planning for Low Carbon Tourism City: A Case Study of Nan, Energy Procedia, 152, 715-724. (2018) [CrossRef] [Google Scholar]
  7. UNWTO, UNWTO World Tourism Barometer, UNWTO World Tourism Barometer and Statistical Annex, 17, 1. (2019) [Google Scholar]
  8. M. Boivin, and G. A. Tanguay, Analysis of the determinants of urban tourism attractiveness: The case of Québec City and Bordeaux, Journal of Destination Marketing & Management, 11, 67-79. (2019) [CrossRef] [Google Scholar]
  9. U. Gretzel, H. Werthner, C. Koo, and C. Lamsfus, Conceptual foundations for understanding smart tourism ecosystems, Computers in Human Behavior, 50, 558-563. (2015) [CrossRef] [Google Scholar]
  10. W. Zheng, H. Ji, C. Lin, W. Wang, and B. Yu, Using a heuristic approach to design personalized urban tourism itineraries with hotel selection, Tourism Management, 76, 103956. (2020) [CrossRef] [Google Scholar]
  11. S. Carlisle, A. Johansen, and M. Kunc, Strategic foresight for (coastal) urban tourism market complexity: The case of Bournemouth, Tourism Management, 54, 81-95. (2016) [CrossRef] [Google Scholar]
  12. D. Edwards, T. Griffin, and B. Hayllar, Urban Tourism Research: Developing an Agenda, Annals of Tourism Research, 35, 4, 1032-1052. (2008) [CrossRef] [Google Scholar]
  13. D. Agapito, P. Pinto, and J. Mendes, Tourists’ memories, sensory impressions and loyalty: In loco and post-visit study in Southwest Portugal, Tourism Management, 58, 108-118. (2017) [CrossRef] [Google Scholar]
  14. F. Mehraliyev, A. P. Kirilenko, and Y. Choi, From measurement scale to sentiment scale: Examining the effect of sensory experiences on online review rating behavior, Tourism Management, 79, 104096. (2020) [CrossRef] [Google Scholar]
  15. X. Lv, C. Li, and S. McCabe, Expanding theory of tourists’ destination loyalty: The role of sensory impressions, Tourism Management, 77, 104026. (2020) [CrossRef] [Google Scholar]
  16. D. Ju-Long, Control problems of grey systems, Systems & Control Letters, 1, 5, 288-294. (1982) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.