Open Access
Issue
E3S Web Conf.
Volume 228, 2021
2020 International Conference on Climate Change, Green Energy and Environmental Sustainability (CCGEES 2020)
Article Number 01010
Number of page(s) 5
Section Research on Green Energy Utilization and Development Technology
DOI https://doi.org/10.1051/e3sconf/202122801010
Published online 13 January 2021
  1. I. Capellán-Pérez, M. Mediavilla, C.D. Castro, Ó. Carpintero, L.J. Miguel, Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy 77, 1–666 (2014). [CrossRef] [Google Scholar]
  2. N. Bauer, J. Hilaire, R.J. Brecha, J. Edmonds, K. Jiang, E. Kriegler, H. Rogner, F. Sferra, Assessing global fossil fuel availability in a scenario framework, Energy 111, 1–592 (2016). [CrossRef] [Google Scholar]
  3. P.J. Landrigan, R. Fuller, Global health and environmental pollution. Int. J. Public Health 60, 1–762 (2015). [CrossRef] [PubMed] [Google Scholar]
  4. C. Mcglade, P. Ekins, The geographical distribution of fossil fuels unused when limiting global warming to 2°C. Nature 517, 1–190 (2015). [CrossRef] [PubMed] [Google Scholar]
  5. Y. Tan, Toward a law of healthy peoples: From the Perspective of the Right to Health. Future Human Image 13, 113-125(2020). [Google Scholar]
  6. S. Mallikarjun, H.F. Lewis, Energy technology allocation for distributed energy resources: A strategic technology-policy framework. Energy 72, 1–799 (2014). [CrossRef] [Google Scholar]
  7. O. Bazaluk, V. Havrysh, V. Nitsenko, T. Baležentis, D. Streimikiene, E.A. Tarkhanova, Assessment of Green Methanol Production Potential and Related Economic and Environmental Benefits: The Case of China. Energies 13(12), 3113 (2020). [CrossRef] [Google Scholar]
  8. T. Melnyk, Ukraine and Its Future in a Globalised International Community. Ukrainian Policymaker 3, 17-28(2018). [CrossRef] [Google Scholar]
  9. A Policy Framework for Climate and Energy in the Period from 2020 to 2030, European Commission, Brussels (2014). [Google Scholar]
  10. N. Scarlat, M. Martinov, J.-F. Dallemand, Assessment of the availability of agricultural crop residue in the European Union: Potential and limitations for bioenergy use. Waste Management 30, 1889-1897(2010). [CrossRef] [Google Scholar]
  11. J. Popp, S. Kovács, J. Oláh, Z. Divéki, E. Balázs, Bioeconomy: Biomass and biomass-based energy supply and demand. New Biotechnology 60, 1–84 (2021). [CrossRef] [PubMed] [Google Scholar]
  12. Rada Ministrów, Polityka energetyczna Polski do 2030 r. (2009). [Google Scholar]
  13. A. Vatsanidou, C. Kavalaris, S. Fountas, N. Katsoulas, T. Gemtos, A Life Cycle Assessment of Biomass Production from Energy Crops in Crop Rotation Using Different Tillage System. Sustainability 12, 69-78 (2020). [Google Scholar]
  14. S. Kim, B.E. Dale, Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass and Bioenergy 29, 1–439 (2005). [CrossRef] [Google Scholar]
  15. B. Küsterman, J.C. Munch, K.J. Hólsbergen, Effects of soil tillage and fertilization on resource efficiency and greenhouse gas emissions in a long-term field experiment in Southern Germany. Eur. J. Agron. 49, 1–73 (2015). [Google Scholar]
  16. Y. Jiang, V. Havrysh, O. Klymchuk, V. Nitsenko, T. Balezentis, D. Streimikiene, Utilization of Crop Residue for Power Generation: The Case of Ukraine. Sustainability 11(24), 7004 (2019). [CrossRef] [Google Scholar]
  17. X. Ou, Y. Xiaoyu, X. Zhang, Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China. Applied Energy 88, 1–297 (2011). [CrossRef] [Google Scholar]
  18. D. Weisser, A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32, 1–59 (2007). [CrossRef] [Google Scholar]
  19. N.S. Bentsen, C. Felby, B.J. Thorsen, Agricultural residue production and potentials for energy and materials services. Progress in Energy and Combustion Science 40, 59-73(2014). [CrossRef] [Google Scholar]
  20. N. Scarlat, M. Martinov, J.-F. Dallemand, Assessment of the availability of agricultural crop residue in the European Union: Potential and limitations for bioenergy use. Waste Management 30, 1889-1897(2010). [CrossRef] [Google Scholar]
  21. D. Cardoen, P. Joshi, L. Diels, P.M. Sarma, D. Pant, Agriculture biomass in India: Part 1. Estimation and characterization. Resources, Conservation and Recycling 102, 39-48(2015). [CrossRef] [Google Scholar]
  22. G. Geletukha, T. Zheliezna, Prospects for the use of agricultural residue for energy production in Ukraine. UABio Position Paper 7 (2014). [Google Scholar]
  23. F. Monforti, K. Bódis, N. Scarlat, J.-F. Dallemand, The Possible Contribution of Agricultural Crop Residue to Renewable Energy Targets in Europe: A Spatially Explicit Study. Renewable and Sustainable Energy Reviews 19(0), 666-677(2013). [CrossRef] [Google Scholar]
  24. A. C. Weiser, V. Zeller, F. Reinicke, B. Wagner, S. Majer Vetter, D. Thraen, Integrated assessment of sustainable cereal straw potential and different strawbased energy applications in Germany. Applied Energy 114, 749-762 (2014). [CrossRef] [Google Scholar]
  25. M. De Noord, L.W.M. Beurskens, H.J. De Vries, Potentials and costs for renewable electricity production. A data Overview 2004. ECN-C 03-006(2004). [Google Scholar]
  26. P. Adapa, L. Tabil, G. Schoenau, Grinding performance and physical properties of non-treated and steam-exploded barley, canola, oat, and wheat straw. Biomass and Bioenergy 35, 549-561(2011). [CrossRef] [Google Scholar]
  27. Physico-mechanical properties of corn (n/d). [Google Scholar]
  28. M.-A. Perea-Moreno, F. Manzano-Agugliaro, A.J. Perea-Moreno, Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability 10, 3407 (2018). [CrossRef] [Google Scholar]
  29. N. Scarlat, M. Martinov, J.-F. Dallemand, Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Management 30, 1–1897 (2010). [CrossRef] [Google Scholar]
  30. M.C. Heller, G.A. Keoleian, T.A. Volk, Life cycle assessment of a willow bioenergy cropping system. Biomass and Bioenergy 25, 1–165 (2003). [CrossRef] [Google Scholar]
  31. M. Skowroñska, T. Filipek, Life cycle assessment of fertilizers: a review. Int. Agrophys. 28, 101-110(2014). [CrossRef] [Google Scholar]
  32. J. Lee, H. Cho, B. Choi, J. Sung, S. Lee, M. Shin, Life cycle assessment of tractors. Int. J. LCA 5, 205-208 (2000). [CrossRef] [Google Scholar]
  33. M. Eriksson, S. Ahlgren, LCAs of Petrol and Diesel—A Literature Review (Swedish University of Agricultural Science: Uppsala, Sweden, 2013). [Google Scholar]
  34. V. Havrysh, A. Kalinichenko, G. Mentel, U. Mentel, D.G. Vasbieva, Husk Energy Supply Systems for Sunflower Oil Mills. Energies 13, 361 (2020). [CrossRef] [Google Scholar]
  35. V. Havrysh, V. Hruban, O. Sadovoy, A. Kalinichenko, K. Taikhrib, Sustainable Energy Supply Based on Sunflower Seed Husk for Oil mills. Proceedings of the International Conference on Modern Electrical and Energy Systems, MEES (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.