Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01004
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202123001004
Published online 18 January 2021
  1. Istomin, V.A., & Yakushev, V.S. (1992). Gazovye gidraty v prirodnykh usloviyakh. Moskva, Rossiya: Nedra, 236 p. [Google Scholar]
  2. Yakushev, V.S., Perlova, E.V., & Makhonina, N.A. (2005). Metastabil’nye (reliktovye) gazogidraty: rasprostranenie, resursy, perspektivy osvoeniya. Kriosfera Zemli, IX (1),68–72. [Google Scholar]
  3. Carroll, J. (2020). Physical properties of hydrates. Natural Gas Hydrates, 269–281. https://doi.org/10.1016/b978-0-12-821771-9.00008-2 [CrossRef] [Google Scholar]
  4. Giavarini, C., & Hester, K. (2011). Physical properties of hydrates. Green Energy and Technology, 59–74. https://doi.org/10.1007/978-0-85729-956-7_5 [CrossRef] [Google Scholar]
  5. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral, 265–269. https://doi.org/10.1201/b19901-47 [CrossRef] [Google Scholar]
  6. Petlovanyi, M. (2016). Influence of configuration chambers on the formation of stress in multi-modulus mass. Mining of Mineral Deposits, 10(2), 48–54. https://doi.org/10.15407/mining10.02.048 [CrossRef] [Google Scholar]
  7. Dyadin, Yu.A. (1998). Supramolekulyarnaya khimiya: klatratnye soedineniya. Sorosovskiy Obrazovatel’nyy Zhurnal, (2), 79–88. [Google Scholar]
  8. Makogon, Yu.F. (2010). Gazogidraty – dopolnitel’nyy istochnik energii Ukrainy. Neftegazovaya i Gazovaya Promyshlennost’, (3), 47–51. [Google Scholar]
  9. Makogon, Yu.F. (1997). Hydrates of hydrocarbons. Tulsa, United States: Pennwell Books, 482 p. [Google Scholar]
  10. Paull, C.K., & Dillon, W.P. (2001). Natural gas hydrates: occurrence, distribution, and detection. Washington: American Geophysical Union, 317 p. https://doi.org/10.1029/gm124 [Google Scholar]
  11. Svetkina, Y., Falshtyns’kyy, V., & Dychkovs’kyy, R. (2010). Features of selectivity process of borehole underground coal gasification. New Techniques and Technologies in Mining, 219–222. https://doi.org/10.1201/b11329-37 [CrossRef] [Google Scholar]
  12. Saik, P., Petlevanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221–231. https://doi.org/10.4028/www.scientific.net/SSP.277.221 [CrossRef] [Google Scholar]
  13. Petlovanyi, M., Lozynskyi, V., Saik, P., & Sai, K. (2019). Predicting the producing well stability in the place of its curving at the underground coal seams gasification. E3S Web of Conferences, (123), 01019. https://doi.org/10.1051/e3sconf/201912301019 [CrossRef] [EDP Sciences] [Google Scholar]
  14. Bondarenko, V., Lozynskyi, V., Sai, K., Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27–32. https://doi.org/10.1201/b19901-6 [CrossRef] [Google Scholar]
  15. Svietkina, O., Tarasova, H., Netiaha, O., & Lysytska, S. (2018). Ash as an alternative source of raw materials. E3S Web of Conferences, 6 (0),00026. https://doi.org/10.1051/e3sconf/20186000026 [CrossRef] [EDP Sciences] [Google Scholar]
  16. Svietkina, O., Bartashevskyi, S., Nikolsky, V., Bas, K., Chlens, P., & Zaharchuk, V. (2018). Obtaining proton-exchange membranes of fuel cells from natural filling agents to be used for vehicles. Solid State Phenomena, (277), 241–250. https://doi.org/10.4028/www.scientific.net/ssp.277.241 [CrossRef] [Google Scholar]
  17. Ganushevych, K., & Sai, K. (2020). Technological aspects of the development of gas hydrate deposits with the use of carbon dioxide injection. E3S Web of Conferences, (201), 01023. https://doi.org/10.1051/e3sconf/202020101023 [CrossRef] [EDP Sciences] [Google Scholar]
  18. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 523 p. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
  19. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, Taylor & Francis Group, 607 p. https://doi.org/10.1201/b19901 [Google Scholar]
  20. Khorolskyi, A., Hrinov, V., & Kaliushenko, O. (2019). Network models for searching for optimal economic and environmental strategies for field development. Procedia Environmental Science, Engineering and Management, 6(3), 463–471. [Google Scholar]
  21. Hanushevych, K., & Srivastava, V. (2017). Coalbed methane: places of origin, perspectives of extraction, alternative methods of transportation with the use of gas hydrate and nanotechnologies. Mining of Mineral Deposits, 11(3), 23–34. https://doi.org/10.15407/mining11.03.023 [CrossRef] [Google Scholar]
  22. Boger, C., Marshall, J.S., & Pilcher, R.C. (2014). Worldwide coal mine methane and coalbed methane activities. Coal Bed Methane, 351–407. https://doi.org/10.1016/b978-0-12-800880-5.00018-8 [CrossRef] [Google Scholar]
  23. Ganushevych, K., Sai, K., & Korotkova, A. (2014). Creation of gas hydrates from mine methane. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 505–509. https://doi.org/10.1201/b17547-85 [Google Scholar]
  24. Thakur, P. (2017). Global reserves of coal bed methane and prominent coal basins. Advanced Reservoir and Production Engineering for Coal Bed Methane, 1–15. https://doi.org/10.1016/b978-0-12-803095-0.00001-6 [Google Scholar]
  25. Pedchenko, M., Pedchenko, L., Nesterenko, T., & Dyczko, A. (2018). Technological solutions for the realization of NGH-technology for gas transportation and storage in gas hydrate form. Solid State Phenomena, (277), 123–136. https://doi.org/10.4028/www.scientific.net/ssp.277.123 [CrossRef] [Google Scholar]
  26. Kvamme, B., Graue, A., Buanes, T., Kuznetsova, T., & Ersland, G. (2007). Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers. International Journal of Greenhouse Gas Control, 1(2), 236–246. https://doi.org/10.1016/s1750-5836(06)00002-8 [CrossRef] [Google Scholar]
  27. Gudmundsson, J.S., & Børrehaug, A. (1996). Frozen hydrate for transport of natural gas. Proceceedings of the 2nd International Conference on Natural Gas Hydrate (pp. 415–422). Toulouse, France. [Google Scholar]
  28. Ganji, H., Manteghian, M., & Rahimi Mofrad, H. (2007). Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity. Fuel Processing Technology, 88(9), 891–895. https://doi.org/10.1016/j.fuproc.2007.04.010 [CrossRef] [Google Scholar]
  29. Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea. Mining of Mineral Deposits, 12(2), 104–115. https://doi.org/10.15407/mining12.02.104 [CrossRef] [Google Scholar]
  30. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 203–205. https://doi.org/10.1201/b16354-37 [CrossRef] [Google Scholar]
  31. Staff, J.P.T. (1999). Natural gas hydrates: A new gas-transportation form. Journal of Petroleum Technology, 51(04), 66–67. https://doi.org/10.2118/0499-0066-jpt [CrossRef] [Google Scholar]
  32. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, (277), 137–146. https://doi.org/10.4028/www.scientific.net/ssp.277.137 [CrossRef] [Google Scholar]
  33. Podenko, L.S., Drachuk, A.O., Molokitina, N.S., & Nesterov, A.N. (2017). Natural gas hydrates formation in dispersed ice stabilized with silica nanoparticles. Kriosfera Zemli, XXI (2),43–51. https://doi.org/10.21782/KZ1560-7496-2017-2(43-51) [Google Scholar]
  34. Kumar, A., Bhattacharjee, G., Kulkarni, B.D., & Kumar, R. (2015). Role of surfactants in promoting gas hydrate formation. Industrial & Engineering Chemistry Research, 54(49),12217–12232. https://doi.org/10.1021/acs.iecr.5b03476 [CrossRef] [Google Scholar]
  35. Najibi, H., Shayegan, M.M., & Heidary, H. (2015). Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS. Journal of Natural Gas Science and Engineering, (23), 315–323. https://doi.org/10.1016/j.jngse.2015.02.009 [CrossRef] [Google Scholar]
  36. Brown, T.D., Taylor, C.E., & Unione, A. (2013). Rapid gas hydrate formation process. Patent No. 8354565 US. Declareted: 14. 06.2010,published: 15. 01.2013. [Google Scholar]
  37. Guo, T.-M., & Qiu, J.-H. (2002). Kinetic of methane hydrate formation in pure water and ingibitor containing systems. Chinese Journal of Chemical Engineering, 10(3), 490–497. [Google Scholar]
  38. Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated chemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 1/6 (91),17–26. https://doi.org/10.15587/1729-4061.2018.123885 [CrossRef] [Google Scholar]
  39. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 465–469. https://doi:10.1201/b17547-79 [Google Scholar]
  40. Farhang, F. (2014). Kinetics of the formation of CO2 hydrates in the presence of sodium halides and hydrophobic fumed silica nanoparticles. PhD Thesis. Queensland, Australia: The University of Queensland, 177 p. https://doi:10.14264/uql.2014.385 [Google Scholar]
  41. Ganji, H., Manteghian, M., & Rahimi Mofrad, H. (2007). Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity. Fuel Processing Technology, 88(9), 891–895. https://doi.org/10.1016/j.fuproc.2007.04.010 [CrossRef] [Google Scholar]
  42. Bondarenko, V., Svietkina, O., Sai, K., & Petlovanyi, M. (2020). Research into thermobaric processes of methane gas hydrates formation. ARPN Journal of Engineering and Applied Sciences, 15(22), 2688–2697. [Google Scholar]
  43. Svetkina, O. (2014). Preparation of filler-stabilizer for composite materials. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 405–409. https://doi.org/10.1201/b17547-69 [Google Scholar]
  44. Bondarenko, V., Ganushevych, K., Sai, K., & Tyshchenko, A. (2011). Development of gas hydrates in the Black Sea. Technical and Geoinformational Systems in Mining: School of Underground Mining 2011, 55–59. https://doi.org/10.1201/b11586-11 [Google Scholar]
  45. Bondarenko, V., Sai, K., Ganushevych, K., & Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 123–127. https://doi.org/10.1201/b19901-23 [CrossRef] [Google Scholar]
  46. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5/6 (89),48–55. https://doi.org/10.15587/1729-4061.2017.112313 [CrossRef] [Google Scholar]
  47. Lange, K.R. (2004). Poverkhnostno-aktivnye veshchestva: sintez, svoystva, analiz, primenenie. Sankt-Peterburg, Rossiya: Professiya, 240 s. [Google Scholar]
  48. Bondarenko, V., Svietkina, O., Sai, K., & Klymenko, V. (2018). Investigation of the influence of polyelectrolytes hydrodynamic properties on the hydrateformation process. E3S Web of Conferences, (60), 00007. https://doi.org/10.1051/e3sconf/20186000007 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.