Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01013
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202123001013
Published online 18 January 2021
  1. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
  2. Bondarenko, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. (2), 21–28. https://doi.org/10.29202/nvngu/2018-2/4 [CrossRef] [Google Scholar]
  3. Bondarenko V., Kovalevska I., Astafiev D., & Malova O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, (277), 137–146. https://doi.org/10.4028/www.scientific.net/SSP.277.137 [CrossRef] [Google Scholar]
  4. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 23–32. https://doi.org/10.17794/rgn.2020.2.3 [CrossRef] [Google Scholar]
  5. Khomenko, O., Kononenko, M., & Myronova, I. (2018). Increasing ecological safety during underground mining of iron-ore deposits deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 29–38. https://doi.org/10.29202/nvngu/2018-2/3 [CrossRef] [Google Scholar]
  6. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenomena, (291), 155–172. https://doi.org/10.4028/www.scientific.net/SSP.291.155 [CrossRef] [Google Scholar]
  7. Khomenko O.Ye., Sudakov, A.K., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(158), 34–43. [Google Scholar]
  8. Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated chemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 6(91), 17–26. https://doi.org/10.15587/1729-4061.2018.123885 [CrossRef] [Google Scholar]
  9. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 203–205. https://doi.org/10.1201/b16354-37 [CrossRef] [Google Scholar]
  10. Kovalevska, I., Zhuravkov, M., Chervatiuk, V., Husiev, O., & Snihur, V. (2019). Generalization of trends in the influence of geomechanics factors on the choice of operation modes for the fastening system in the preparatory mine workings. Mining of Mineral Deposits 13(3),1–11. https://doi.org/10.33271/mining13.03.001 [CrossRef] [Google Scholar]
  11. Lozynskyi, V.H., Dychkovskyi, R.O., Falshtynskyi, V.S., & Saik, P.B. (2015). Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22–28. [Google Scholar]
  12. Roy, N., Solovyov, V., Dmytrenko, V., & Savyk, V. (2019). On modern possibilities of research on gas and gas-condensate wells in any filtering mode. International Journal of Engineering & Technology, 7(4),404–407. https://doi.org/10.14419/ijet.v7i4.8.27279 [Google Scholar]
  13. Kozhevnykov, A.O., Dreus, А.Yu., Baochang, Liu, & Sudakov, A.K. (2018). Drilling fluid circulation rate infuence on the contact temperature during borehole drilling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 1(163),35–43. https://doi.org/10.29202/nvngu/2018-1/14 [CrossRef] [Google Scholar]
  14. Dreus, A.J., Sudakov, А.К., Коzhevnikov, А.А., & Vahalin, J.M. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3(153), 5–9. [Google Scholar]
  15. Dreus, A., Sudakov, А., Lysenko, K., & Коzhevnikov, А. (2016). Investigation of heating of the drilling bits and definition of the energy efficient drilling modes. Eastern-European Journal of Enterprise Technologies. Technologies, 7(81), 41–46. https://doi.org/10.15587/1729-4061.2016.71995 [CrossRef] [Google Scholar]
  16. Mustakhimov, A., & Zeynullin, A. (2020). Scaled-up laboratory research into dry magnetic separation of the Zhezdinsky concentrating mill tailings. Mining of Mineral Deposits, 14(3), 71–77. https://doi.org/10.33271/mining14.03.071 [CrossRef] [Google Scholar]
  17. Fedorov, B.V. (2016). Drilling of the wells. Almaty, Kazakhstan: Textbook Almaty, KazNRTU, 368 p. [Google Scholar]
  18. Kozhevnykov, A., Dreus, A., Ratov, B., & Sudakov, A. (2019). The drill bits: history and modern experience. Rock-Cutting and Metal-Working Tools – The Technique and Technology of its Manufacture and Application, (22), 25–31. [Google Scholar]
  19. Taibergenova, I.K., & Fedorov, B.V. (2018). Drill bit. Patent RK No. 2016/1222, 1. [Google Scholar]
  20. Gandzhumyan, R.А., Kalinin, А.G., & Serduk, N.I. (2007). Drilling calculations. Moscow, Russian Federation: RGGU, 668 p. [Google Scholar]
  21. Sudakov, А.К., Dreus, A.Yu., Khomenko О.Ye., & Sudakova, D.A. (2017). Analytical study of heat transfer in absorptive horizons of borehole at forming cryogenic protecting of the plugging material. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3(159), 32–46. [Google Scholar]
  22. Dreus, A.Yu., Bondarenko, V.I., Biletskyi, V.S., & Lysenko, R.S. (2020). Mathematical simulation of heat and mass exchange processes during dissociation of gas hydrates in a porous medium. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5 (179). https://doi.org/10.33271/nvngu/2020-5/033 [Google Scholar]
  23. Kudaikulov, S.K. (2010). Drilling a well in difficult conditions with removable core drills. Almaty, Kazakhstan: КаzNRTU, 243 p. [Google Scholar]
  24. Ratov, B.T., & Kozhevnykov, A.A. (2019). Dependence of the drilling speed on the frictional forces on the cutters of the rock-cutting tool. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 21–27. https://doi.org/10.29202/nvngu/20191/22 [Google Scholar]
  25. Koroviaka, Ye., Rastsvietaiev, V., Dmytruk, O., & Tykhonenko, V. (2017). Prospects to use biogas of refuse dams of Dnipropetrovsk region (Ukraine) as alternative energy carrier. Mechanics, Materials Science & Engineering, (11), 1–9. https://doi.org/10.2412/mmse.40.34.18 [Google Scholar]
  26. Ratov, B.T., Fedorov, B.V., Khomenko, V.L., Baiboz, A.R., & Korgasbekov, D.R. (2020). Some features of drilling technology with pdc bits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 13–19. https://doi.org/10.33271/nvngu/20203/013 [CrossRef] [Google Scholar]
  27. Biletsky, M.T., Ratov, B.T., & Baiboz, A.R. (2017). Drill bit. Patent for the invention of the Republic of Kazakhstan. [Google Scholar]
  28. Sudakov, A., Dreus, А., Ratov, B., & Delikesheva, D. (2018). Theoretical bases of isolation technology for swallowing horizons using thermoplastic materials. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 2(428), 72–80. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.