Open Access
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01014
Number of page(s) 11
Published online 18 January 2021
  1. Kvenvolden, K.A. (1993). Gas hydrates – geological perspective and global change. Reviews of Geophysics, 31(2), 173–187. [CrossRef] [Google Scholar]
  2. Bondarenko, V., Sai, K., Ganushevych, K., & Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 123–127. [CrossRef] [Google Scholar]
  3. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group. [CrossRef] [Google Scholar]
  4. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. [CrossRef] [Google Scholar]
  5. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenomena, (291), 155–172. [CrossRef] [Google Scholar]
  6. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 203–205. [CrossRef] [Google Scholar]
  7. Pedchenko, М., & Pedchenko, L. (2016). Technological complex for production, transportation and storage of gas from the offshore gas and gas hydrates fields. Mining of Mineral Deposits, 10(3), 20–30. [CrossRef] [Google Scholar]
  8. Nogami, T., Oya, N., Ishida, H., & Matsumoto, H. (2008), Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH). Procedeengs of the 6th International Conference on Gas Hydrates. Vancouver, Canada. [Google Scholar]
  9. Gudmundsson, J., Graff, O., & Kvaerner, A. (2003). Hydrate non-pipeline technology for transport of natural gas. In 22nd World Gas Conference (pp. 1–6). Tokyo, Japan: IGU. [Google Scholar]
  10. Gudmundsson, J.-S., Parlaktuna, M., & Khokhar, A.A. (1994). Storage of natural gas as frozen hydrate. SPE Production & Facilities, 9(1), 69–73. [CrossRef] [Google Scholar]
  11. Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated chemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 6(91), 17–26. [CrossRef] [Google Scholar]
  12. Javanmardi, J., & Moshfeghian, M. (2003). Energy consumption and economic evaluation of water desalination by hydrate phenomenon. Applied Thermal Engineering, 23(7), 845–857. [CrossRef] [Google Scholar]
  13. Nagata, T., Tajima, H., Yamasaki, A., Kiyono, F., & Abe, Y. (2009). An analysis of gas separation processes of HFC-134a from gaseous mixtures with nitrogen – Comparison of two types of gas separation methods, liquefaction and hydrate-based methods, in terms of the equilibrium recovery ratio. Separation and Purification Technology, 64(3), 351–356. [CrossRef] [Google Scholar]
  14. Bondarenko, V., Svietkina, O., Lysenko, R., & Liu, B. (2020). Methane gas hydrates influence on sudden coal and gas outbursts during underground mining of coal deposits. E3S Web of Conferences, (201), 01002. [CrossRef] [EDP Sciences] [Google Scholar]
  15. Sloan, E.D., Koh, C., & Sum, A. K. (2009). Natural gas hydrates in flow assurance. Summer workshop (June 10-12). Colorado, United States: Colorado School of Mines. [Google Scholar]
  16. Bondarenko V., Kovalevska I., Astafiev D., Malova O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, (277), 137–146. [CrossRef] [Google Scholar]
  17. Kinnari, K., Hundseid, J., Li, X., & Askvik, K.M. (2015). Hydrate management in practice. Journal of Chemical & Engineering Data, 60(2), 437–446. [CrossRef] [Google Scholar]
  18. Sloan, E., Koh, C., & Sum, A. (2010). Natural gas hydrates in flow assurance. Oxford, United Kingdom: Elsevier, Gulf Professional Publishing, 224 p. [Google Scholar]
  19. Maksymova, E., Ovchynnikov, M., Lysenko, R., & Kostrytska, S. (2018). Physical and chemical methods of methane utilization in Ukrainian coal mines. Solid State Phenomena, (277), 147–156. [CrossRef] [Google Scholar]
  20. Takeya, S., Ebinuma, T., Uchida, T., Nagao, J., & Narita, H. (2002). Self-preservation effect and dissociation rates of CH4 hydrate. Journal of Crystal Growth, (237–239), 379–382. [NASA ADS] [CrossRef] [Google Scholar]
  21. Stern, L.A., Circone, S., Kirby, S.H., & Durham, W.B. (2003). Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates. Canadian Journal of Physics, 81(1-2), 271–283. [CrossRef] [Google Scholar]
  22. Sloan, E.D. (1990). Clathrate hydrates of natural gases. New York, United States: Marcel Dekker. [Google Scholar]
  23. Ohmura, R., Ogawa, M., Yasuoka, K., & Mori, Y.H. (2003). Statistical study of clathrate-hydrate nucleation in a water/hydrochlorofluorocarbon system: search for the nature of the memory effect. The Journal of Physical Chemistry B, 107(22), 5289–5293. [CrossRef] [Google Scholar]
  24. Pedchenko, L., Nyemchenko, K., Pedchenko, N., & Pedchenko, M. (2018). Use of alternative energy sources to improve the efficiency of natural gas hydrate technology for gas offshore deposits transportation. Mining of Mineral Deposits, 12(2), 122–131. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.